Home
Class 12
MATHS
sin^-1(-x) = -sin^-1(x); cos^-1(-x) = pi...

`sin^-1(-x) = -sin^-1(x); cos^-1(-x) = pi - cos^-1(x); tan^-1(-x) = -tan^-1(x); cot^-1(-x) = pi - cot^-1(x); sec^-1(-x) = pi - sec^-1(x); cosec^-1(-x) = -cosec^-1(X)`

Promotional Banner

Similar Questions

Explore conceptually related problems

sin(sec^(-1)x+"cosec"^(-1)x)

sin^(-1)(sin x)=x;cos^(-1)(cos x)=x;tan^(-1)(tan x)=x;cot^(-1)(cot x)=x;sec^(-1)(sec x)=x;cos ec^(-1)(cos ecx)

sin "cosec"^(-1) cot (tan^(-1)x) =x

sin^(-1)((1)/(x))=cos ec^(-1)(x);cos^(-1)((1)/(x))=sec^(-1)(x);tan^(-1)((1)/(x))=cot^(-1)(x)f or x>0 and -pi+cot^(-1)(x)f or x

sin(sin^(-1)x)=x;cos(cos^(-1)x)=x;tan(tan^(-1)x)=x;cot(cot^(-1)x)=x;sec(sec^(-1)x)=x;cos ec(cos ec^(-1)x)

If sin (cot^(-1)(1-x))=cos(tan^(-1)(-x)) , then x is

Prove that: tan^(-1)(x)=2tan^(-1)(cosec tan^(-1)x-tan cot^(-1)x)

cos(sec^(-1)x+cosec^(-1)x),|x|ge1

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x