Home
Class 12
MATHS
Using properties of determinants, prove...

Using properties of determinants, prove that `|[a, a+b, a+b+c],[2a,3a+2b,4a+3b+2c],[3a,6a+3b,10a+6b+3c]|=a^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Using properties of determinants,prove that det[[a,a+b,a+b+c2a,3a+2b,4a+3b+2c3a,6a+3b,10a+6b+3c]]=a^(3)

Show that: |[a, a+b ,a+b+c],[2a,3a+2b,4a+3b+2c],[3a,6a+3b, 10 a+6b+3c]|=a^3 .

Prove that |[a, a+b, a+b+c],[ 2 a, 3 a+2 b, 4 a+3 b+2 c],[ 3 a, 6 a+3 b, 10 a+6 b+3 c]|=a^3

Consider abs[[a,a+b,a+b+c],[2a,3a+2b,4a+3b+2c],[3a,6a+3b,10a+6b+3c]]

Prove that {:[( a,a+b,a+b+c) ,( 2a,3a+2b,4a+3b+2c),( 3a,6a+3b,10a+6b+3c)]:}=a^(3)

Using properties of determinants, prove that |[3a,-a+b,-a+c],[-b+a,3b,-b+c],[-c+a,-c+b,3c]| = 3(a+b+c)(ab+bc+ca)

Using properties of determinants, prove that: |[3a,-a+b,-a+c],[-b+a,3b,-b+c],[-c+a,-c+b,3c]| = 3(a+b+c)(ab+bc+ca)