Home
Class 12
MATHS
Let p=4 sec^2 theta + cos^2 theta and q-...

Let `p=4 sec^2 theta + cos^2 theta and q- cosec^2 phi + 4 sin^2 thetaphi,` then find the minimum value of `(p+q).`

Promotional Banner

Similar Questions

Explore conceptually related problems

p=4sec^(2)theta+cos^(2)theta and q=cos ec^(2)phi+4sin^(2)phi then find the minimum value of (p+q)

If p sec theta+q tan theta=1 and p^(2)sec^(2)theta-q^(2)tan^(2)theta=5 then find the value of (9p^(-2)-4q^(-2))

If "cosec" theta - sin theta =p^3 and sec theta - cos theta = q^3 , then what is the value of tan theta ?

cos 2 (theta+ phi) +4 cos (theta + phi ) sin theta sin phi + 2 sin ^(2) phi=

cos 2 (theta+ phi) +4 cos (theta + phi ) sin theta sin phi + 2 sin ^(2) phi=

The value of 2 sec^(2) theta - sec^(4) theta - 2 cosec^(2)theta + cosec^(4) theta is

|(4 sin^(2)theta, cos^(2) theta),(3 sec^(2)theta,cosec^(2)theta)|=

If p and p' be perpendiculars from the origin upon the straight lines x sec theta+y"cosec"theta=a and x cos theta-y sin theta=a cos 2theta , then the value of the expression 4p^(2)+p'^(2) is :