Home
Class 11
MATHS
Prove that the circle x^(2)+y^(2)+2x+2y+...

Prove that the circle `x^(2)+y^(2)+2x+2y+1=0` and circle `x^(2)+y^(2)-4x-6y-3=0` touch each other.

Promotional Banner

Similar Questions

Explore conceptually related problems

Given that the circle x^(2)+y^(2)+2 x-4 y+4=0 and x^(2)+y^(2)-2 x-4 y-4=0 touch each other the equation of the common tangtnt is

Circle x ^(2) + y^(2)+6y=0 touches

Circle x ^(2) + y^(2)+6y=0 touches

The circles x^(2)+y^(2)+2x-2y+1=0 and x^(2)+y^(2)-2x-2y+1=0 touch each other

The circles x^(2)+y^(2)+2x-2y+1=0 and x^(2)+y^(2)-2x-2y+1=0 touch each other

Show that the circles x^(2)+y^(2)-8x-2y+8=0 and x^(2)+y^(2)-2x+6y+6=0 touch each other and find the point of contact.

Prove that the circles x^(2) +y^(2) - 4x + 6y + 8 = 0 and x^(2) + y^(2) - 10x - 6y + 14 = 0 touch at the point (3,-1)

Prove that the circles x^(2) +y^(2) - 4x + 6y + 8 = 0 and x^(2) + y^(2) - 10x - 6y + 14 = 0 touch at the point (3,-1)

Prove that the circles x^(2) +y^(2) - 4x + 6y + 8 = 0 and x^(2) + y^(2) - 10x - 6y + 14 = 0 touch at the point (3,-1)