Home
Class 11
MATHS
1^(3)+2^(3)+3^(3)+…..+n^(3)=(1)/(4)n^(2)...

`1^(3)+2^(3)+3^(3)+…..+n^(3)=(1)/(4)n^(2)(n+1)^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

1^(3)+2^(3)+3^(3)+...+n^(3)=n^(2)((n+1)^(2))/(4)

1^(3)+2^(3)+3^(3)+………….+n^(3)=(n^(2)(n+1)^(2))/4 forall n in N.

1^(3)+2^(3)+3^(3)+.....+n^(3)=(n(n+1)^(2))/(4), n in N

Match the following . {:(,"ColumnI",,"ColumnII"),((i) ,1^(2) +2^(2) +3^(2) +....+n^(2) ,(a) ,[(n(n+1))/(2)]^(2)),((ii) , 1^(3) +2^(3) +3^(3) +...+n^(3) ,(b), n(n+1)),((iii),2+4+6+...+2n,( c),(n(n+1)(2n+1))/(6)),((iv),1+2+3+...+n,(d),(n(n+1))/(2)):}

S_(n) = 1^(3) + 2^(3) + 3^(3) + …... + n^(3) and T_(n) = 1+ 2 + 3+ 4…...n

Prove that by using the principle of mathematical induction for all n in N : 1.3+ 2.3^(2)+ 3.3^(3)+ ....+ n.3^(n)= ((2n-1)3^(n+1)+3)/(4)

Prove that by using the principle of mathematical induction for all n in N : 1.3+ 2.3^(2)+ 3.3.^(3)+ ....+ n.3^(n)= ((2n-1)3^(n+1)+3)/(4)

Prove that by using the principle of mathematical induction for all n in N : 1.3+ 2.3^(2)+ 3.3.^(3)+ ....+ n.3^(n)= ((2n-1)3^(n+1)+3)/(4)

(1^(3)+2^(3)+...+n^(3))/(1+3+5+...+(2n-1))=((n+1)^( 2))/(4)