Home
Class 11
MATHS
If A = [(lambda,1),(-1,-lambda)], then f...

If A = `[(lambda,1),(-1,-lambda)]`, then for what value of `lambda,A^(2)=0`?

Promotional Banner

Similar Questions

Explore conceptually related problems

If A = [{:(lambda,1),(-1,-lambda):}] , then for what values of lambda, A^(2) =0 ? …………..

tan^(-1)3 + tan^(-1) lambda = tan^(-1) {(3+ lamda)/(1- 3 lamda)} is valid for what values of lambda ? A) lambda in (-1/3,1/3) B) lambda gt (1/3) C) lambda lt (1/3) D) all real values of lambda

tan^(-1)3 + tan^(-1) lambda = tan^(-1) {(3+ lamda)/(1- 3 lamda)} is valid for what values of lambda ? A) lambda in (-1/3,1/3) B) lambda gt (1/3) C) lambda lt (1/3) D) all real values of lambda

If the matrix A = [[lambda_(1)^(2), lambda_(1)lambda_(2), lambda_(1) lambda_(3)],[lambda_(2)lambda_(1),lambda_(2)^(2),lambda_(2)lambda_(3)],[lambda_(3)lambda_(1),lambda_(3)lambda_(2),lambda_(3)^(2)]] is idempotent, the value of lambda_(1)^(2) + lambda_(2)^(2) + lambda _(3)^(2) is

If the matrix A = [[lambda_(1)^(2), lambda_(1)lambda_(2), lambda_(1) lambda_(3)],[lambda_(2)lambda_(1),lambda_(2)^(2),lambda_(2)lambda_(3)],[lambda_(3)lambda_(1),lambda_(3)lambda_(2),lambda_(3)^(2)]] is idempotent, the value of lambda_(1)^(2) + lambda_(2)^(2) + lambda _(3)^(2) is

If the matrix A = [[lambda_(1)^(2), lambda_(1)lambda_(2), lambda_(1) lambda_(3)],[lambda_(2)lambda_(1),lambda_(2)^(2),lambda_(2)lambda_(3)],[lambda_(3)lambda_(1),lambda_(3)lambda_(2),lambda_(3)^(2)]] is idempotent, the value of lambda_(1)^(2) + lambda_(2)^(2) + lambda _(3)^(2) is

If the matrix A = [[lambda_(1)^(2), lambda_(1)lambda_(2), lambda_(1) lambda_(3)],[lambda_(2)lambda_(1),lambda_(2)^(2),lambda_(2)lambda_(3)],[lambda_(3)lambda_(1),lambda_(3)lambda_(2),lambda_(3)^(2)]] is idempotent, the value of lambda_(1)^(2) + lambda_(2)^(2) + lambda _(3)^(2) is

If the matrix A = [[lambda_(1)^(2), lambda_(1)lambda_(2), lambda_(1) lambda_(3)],[lambda_(2)lambda_(1),lambda_(2)^(2),lambda_(2)lambda_(3)],[lambda_(3)lambda_(1),lambda_(3)lambda_(2),lambda_(3)^(2)]] is idempotent, the value of lambda_(1)^(2) + lambda_(2)^(2) + lambda _(3)^(2) is

If |a_(i)| lt 1, lambda_(i) ge 0 for i=1,2,……n and lambda_(1)+lambda_(2)+…….+lambda_(n)=1 , then the value of |lambda_(1)a_(1)+lambda_(2)a_(2)+…….+lambda_(n)a_(n)| is