Home
Class 12
MATHS
" 139."sin^(-1)((2x)/(1+x^(2)))=...........

" 139."sin^(-1)((2x)/(1+x^(2)))=..........|x|<=1

Promotional Banner

Similar Questions

Explore conceptually related problems

sin((1+x^(2))/(1-x^2))

If x(3-x)<=2 then sin^(-1)(x)+sin^(-1)(x^(2))+......+sin^(-1)(x^(10))=

The derivative of sin^(-1) ((2x)/(1+x^(2))) w.r.t sin^(-1) ((1-x^(2))/(1+x^(2))) is

tan ^ (-1) ((1-x ^ (2)) / (2x)) + sin ^ (-1) ((2x) / (1 + x ^ (2))) =

2 tan^(-1) x = sin^(-1) ((2x)/(1+x^(2))) , 1 le x le 1

Prove that 2 tan^-1 (1/x) = sin^-1 ((2x)/(1+x^2)), |x| ge 1

sin[cot^(-1)((2x)/(1-x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))]=

Prove that sin^(-1)((2x)/(1+x^2))=tan^(-1)((2x)/(1-x^2))