Home
Class 12
MATHS
y=sin^(-1)(2x sqrt(1-x^(2))),-(1)/(sqrt(...

y=sin^(-1)(2x sqrt(1-x^(2))),-(1)/(sqrt(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate each of the following functions with respect to x:( i) sin^(-1)(2x sqrt(1-x^(2))),-(1)/(sqrt(2))

Find (dy)/(dx) in the following: y= sin^(-1) (2x sqrt(1-x^(2))), (1)/(sqrt2) lt x lt 1

Find (dy)/(dx) in the following y= sin^(-1) (2x sqrt(1-x^(2))), -(1)/(sqrt2) lt x lt (1)/(sqrt2)

Differentiate tan^(-1)((x)/(sqrt(1-x^(2)))) with respect to sin^(-1)(2x sqrt(1-x^(2))), if -(1)/(sqrt(2))

sin^(-1)(2x sqrt(1-x^(2))),x in[(1)/(sqrt(2)),1] is equal to

If y = sin ^(-1) (2x sqrt (1- x ^(2))), - (1)/( sqrt2) le x le (1)/( sqrt2) , then (dy)/(dx) is equal to a) (x)/( sqrt (1- x ^(2))) b) (1)/( sqrt(1- x ^(2))) c) (2)/( sqrt (1 - x ^(2))) d) (2x)/( sqrt (1- x ^(2)))

Prove that : 2 sin^-1 x = sin^-1 (2x sqrt(1-x^2)), |x| le (1/(sqrt2)

Find dy/dx in the following: y=sin^-1(2x sqrt(1-x^2)) , -1/sqrt2ltxlt1/sqrt2

Prove that sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)

Prove that sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)