Home
Class 11
MATHS
If g is the inverse function of fa n df...

If `g` is the inverse function of `fa n df^(prime)(x)=sinx ,t h e ng^(prime)(x)` is (a)`cos e c{g(x)}` (b) `"sin"{g(x)}` (c)`-1/("sin"{g(x)})` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If g is the inverse function of f and f'(x) = sin x then g'(x) =

If g is the inverse function of fandf'(x)=sin x, theng '(x) is (a) cos ec{g(x)}(b)sin{g(x)}(c)-(1)/(sin{g(x)}) (d) none of these

If g is the inverse function of and f'(x) = sin x then prove that g'(x) = cosec (g(x))

If g is the inverse function of and f'(x) = sin x then prove that g'(x) = cosec (g(x))

If g is the inverse function of and f'(x) = sin x then prove that g'(x) = cosec (g(x))

If g is the inverse of f and f'(x)=1/(1+x^n) , prove that g^(prime)(x)=1+(g(x))^n

If g(x) is the inverse function and f'(x) = sin x then prove that g'(x) = cosec [g(x)]

If f(x)=x+tanxa n df is the inverse of g, then g^(prime)(x) equals (a) 1/(1+[g(x)-x]^2) (b) 1/(2-[g(x)-x]^2) (c) 1/(2+[g(x)-x]^2) (d) none of these

Let g is the inverse function of fa n df^(prime)(x)=(x^(10))/((1+x^2)) . If g(2)=a , then g^(prime)(2) is equal to a/(2^(10)) (b) (1+a^2)/(a^(10)) (a^(10))/(1+a^2) (d) (1+a^(10))/(a^2)

If u=f(x^3),v=g(x^2),f^(prime)(x)=cosx ,a n dg^(prime)(x)=sinx ,t h e n(d u)/(d v) is