Home
Class 11
MATHS
" (1) Prove that "|[a,a+b,a+b+c],[2a,3a+...

" (1) Prove that "|[a,a+b,a+b+c],[2a,3a+2b,4a+3b+2c],[3a,6a+3b,10a+6b+3c]|=a^(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Using properties of determinants, prove that |[a, a+b, a+b+c],[2a,3a+2b,4a+3b+2c],[3a,6a+3b,10a+6b+3c]|=a^3

Show that: |[a, a+b ,a+b+c],[2a,3a+2b,4a+3b+2c],[3a,6a+3b, 10 a+6b+3c]|=a^3 .

Consider abs[[a,a+b,a+b+c],[2a,3a+2b,4a+3b+2c],[3a,6a+3b,10a+6b+3c]]

Prove that {:[( a,a+b,a+b+c) ,( 2a,3a+2b,4a+3b+2c),( 3a,6a+3b,10a+6b+3c)]:}=a^(3)

Using properties of determinants,prove that det[[a,a+b,a+b+c2a,3a+2b,4a+3b+2c3a,6a+3b,10a+6b+3c]]=a^(3)

Without expanding show that following : |[a,a+b,a+b+c],[2a,3a+2b,4a+3b+2c],[3a,6a+3b,10a+6b+3c]| = a^3

Prove that |[a, a+b, a+b+c],[ 2 a, 3 a+2 b, 4 a+3 b+2 c],[ 3 a, 6 a+3 b, 10 a+6 b+3 c]|=a^3

Using properties of determinants, prove that: |{:(a, a +b, a+b+c),(2a, 3a + 2b, 4a + 3b + 2c),(3a, 6a+3b, 10a + 6b + 3c):}| = a^(3)