Home
Class 12
MATHS
" 凭.cos "(an^(2)+hx+c)+sin^(3)sqrt(ax^(2...

" 凭.cos "(an^(2)+hx+c)+sin^(3)sqrt(ax^(2)+br+c)

Promotional Banner

Similar Questions

Explore conceptually related problems

In the triangle ABC , in which C is the right angle, prove that : sin 2 A =(2 ab )/(c ^(2)) , cos 2 A= ( b ^(2) - a ^(2))/( c ^(2)), sin ""(A)/(2) = sqrt ((c -b)/( 2c)) , cos ""(A)/(2)= sqrt ((c +b)/( 2c)).

If triangleABC is a right triangle and if angleA=pi/2 , then prove that (i) cos^(2) B+cos^(2)C=1 (ii) sin^(2) B+sin^(2) C=1 cos B-cos C=-1+2 sqrt2 cos""B/2sin ""C/2

If : A+B+C= pi "then" : 1 - sin^(2)""(A)/(2) - sin^(2)""(B)/(2)+ sin^(2)""(C)/(2)= A) 2cos""(A)/(2) * cos sin ^(2)""(B)/(2) + sin^(2)""(C)/(2) B) 2 cos ""(B)/(2)* cos ""(B)/(2) * sin""(C)/(2) C) 2 cos ""(C)/(2)* cos ""(A)/(2) * sin""(B)/(2) D) 2 cos ""(A)/(2)* cos ""(B)/(2) * sin""(C)/(2)

int_( then )^( If )cos^(-1)x+cos^(-1)sqrt(1-x^(2))dx=Ax+f(x)sin^(-1)x-2sqrt(1-x^(2))+c

If int cos^(-1)x+cos^(-1)sqrt(1-x^2) dx= Ax+f(x)sin^(-1)x-2sqrt(1-x^2)+c then

(cos hx - sin hx)^(n) =

If : A+B+C=pi, "then"" "sin ^(2) A +sin^(2)B - sin ^(2)C= A) 2 cos A * cos B * sin C B) 2 cos B * cos C * sin A C) 2 sin A * sin B * cos C D) 2 sin B * sin C * cos A

intsqrt(1+cos e cx)dx equals (a) 2sin^(-1)sqrt(sinx)+c (b) sqrt(2)cos^(-1)sqrt(cosx)+c (c) c-2sin^(-1)(1-2sinx) (d) cos^(-1)(1-2sinx)+c

If a cos theta - b sin theta = c, prove that a sin theta + b cos theta = pm sqrt(a^(2) + b^(2) - c^(2)) .