Home
Class 9
MATHS
" v) "(x^(2)+y^(2)-z^(2))^(2)-(x^(2)-y^(...

" v) "(x^(2)+y^(2)-z^(2))^(2)-(x^(2)-y^(2)+z^(2))^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify: (x^(2)+y^(2)-z^(2))^(2)-(x^(2)-y^(2)+z^(2))^(2)

If x=r sin theta cos varphi,y=r sin theta sin varphi and z=r cos theta, then x^(2)+y^(2)+z^(2)=r^(2)(b)x^(2)+y^(2)-z^(2)=r^(2)(c)x^(2)-y^(2)+z^(2)=r^(2)(d)z^(2)+y^(2)-x^(2)=r^(2)

Locus of the point (r sec alpha cos beta,r sec alpha sin beta,r tan alpha) is (a). x^(2)-y^(2)-z^(2)=r^(2) (b). x^(2)-y^(2)+z^(2)=r^(2) (c). x^(2)+y^(2)+z^(2)=r^(2) (d) . x^(2)+y^(2)-z^(2)=r^(2)

Factorization by taking out the common factors: x(x^(2)+y^(2)-z^(2))+y(-x^(2)-y^(2)+z^(2))-z(x^(2)+y^(2)-z^(2))

Factorize each of the following expressions: x(x^(2)+y^(2)-z^(2))+y(-x^(2)-y^(2)+z^(2))-z(x^(2)+y^(2)-z^(2))

"if " sin^(-1) x +sin ^(-1) y+sin ^(-1) z=pi show that , x^(4)+y^(4)+z^(4)+4x^(2)y^(2)z^(2)=2(x^(2)y^(2)+y^(2)z^(2)+z^(2)x^(2))

If Sin^(-1)x + Sin^(-1)y + Sin^(-1)z = pi , then prove that x^(4) + y^(4) + z^(4) + 4x^(2)y^(2)z^(2) = 2(x^(2)y^(2)+y^(2)z^(2)+z^(2)x^(2)) .

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , then prove that x^(4)+y^(4)+z^(4)+4x^(2)y^(2)z^(2)=2(x^(2)y^(2)+y^(2)z^(2)+z^(2)x^(2))