Home
Class 12
MATHS
Theorem 3:If vectors veca, vecb and vecc...

Theorem 3:If vectors `veca`, `vecb` and `vecc` are coplanar then det(`veca` `vecb` `vecc`) = 0

Promotional Banner

Similar Questions

Explore conceptually related problems

If vecA,vecB and vecC are coplanar vectors, then

If vectors veca, vecb and vecc are coplanar, show that |{:(veca, vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc):}|=vec0

If the vectors veca, vecb, and vecc are coplanar show that |(veca,vecb,vecc),(veca.veca, veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc)|=0

If the vectors veca, vecb, and vecc are coplanar show that |(veca,vecb,vecc),(veca.veca, veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc)|=0

If the vectors veca, vecb, and vecc are coplanar show that |(veca,vecb,vecc),(veca.veca, veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc)|=0

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

Three vectors veca,vecb and vecc are such that |veca|=2,|vecb|=3,|vecc|=4 and veca+vecb+vecc=0 find 4veca*vecb+3vecb*vecc+3vecc*veca .

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals