Home
Class 12
MATHS
" 10."sin sqrt(1+x^(2))...

" 10."sin sqrt(1+x^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: sin^-1 (x/(sqrt(1+x^2)))- sin (1/(sqrt(1+x^2)))= sin^-1 ((1+x)/(1+x^2))

Solve: sin^-1 (x)+ sin (sqrt(1-x^2))=

int_(0)^(10pi) sqrt(1- sin^(2) x ) dx is equal to

lim_(x to 0) (x +2 sin x)/(sqrt(x^(2)+2 sin x + 1)-sqrt(sin^(2) x - x+ 1)) is

(cot^(-1){sqrt(1+sin x)+sqrt(1-sin x)})/(sqrt(1+sin x)-sqrt(1-sin x))

the expression ((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=

Prove that sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)

Prove that sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)

Prove that sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)