Home
Class 12
MATHS
[" If "alpha" and "beta" are two complx ...

[" If "alpha" and "beta" are two complx numbers then prove that "],[| alpha+sqrt(alpha^(2)-beta^(2))|+| alpha-sqrt(alpha^(2)-beta^(2))|=| alpha+beta|+| alpha-beta|]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that | alpha+sqrt(alpha^(2)-beta^(2))|+| alpha-sqrt(alpha^(2)-beta^(2))|=| alpha+beta|+| alpha-beta| where alpha,beta are complex numbers.

If alpha & beta are any two complex numbers, prove that |alpha+beta|^2+|alpha-beta|^2=2(|alpha|^2+|beta|^2)

Prove that alpha^(2)+beta^(2)=(alpha+beta)^(2)-2 alpha beta

If alpha,beta are complex number such that | alpha+beta|^(2)=| alpha|^(2)+| beta|^(2)+2k then k=

Prove that: tan(alpha+beta)tan(alpha-beta)=(sin^2 alpha-sin^2 beta)/(cos^2 alpha-sin^2 beta)

a((alpha^(2))/(beta)+(beta^(2))/(alpha))+b((alpha)/(beta)+(beta)/(alpha))

f(alpha,beta) = cos^2(alpha)+ cos^2(alpha+beta)- 2 cosalpha cosbeta cos(alpha+beta) is

Prove that , tan(alpha+beta)tan(alpha-beta)=(sin^2alpha-sin^2beta)/(cos^2alpha-sin^2beta)

If alpha and beta be the zeros of the polynomial ax^(2)+bx+c, then the value of sqrt((alpha)/(beta))+sqrt((beta)/(alpha))

Prove that: cos2 alpha cos2 beta+sin^(2)(alpha-beta)-sin^(2)(alpha+beta)=cos2(alpha+beta)