Home
Class 12
MATHS
" 7.यदि "i=[[1,0],[0,1]]" तो "r^(4)...

" 7.यदि "i=[[1,0],[0,1]]" तो "r^(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

If I=[[1,0],[0,1]] , then I^4=

If A= [[6,2],[-1,3]] and I= [[1,0],[0,1]] show that (A-4I) (A-5I)=0

If A=[[2,4],[3,13]]"and I"=[[1,0],[0,1]]"find" A-alpha I,alpha in R.

If A= [[5,2],[-1,2]] and I= [[1,0],[0,1]] show that (A-3I) (A-4I)=0

If A= [[7,2],[-1,4]] and I= [[1,0],[0,1]] show that (A-5I) (A-6I)=0

Verify that the matrix equation A^2 - 4a +3I =0 is satisfied by the matrix A = [[2,-1],[-1,2]] , where I = [[1,0],[0,1]] and 0= [[0,0],[0,0]] ,

If A=[[3,-2],[4,-2]] and I=[[1,0],[0,1]] , find k so that A^2=kA-2I

For 2 times 2 matrices A,B and I, if A+B=I and 2A-2B=I , then A equals 1) [[(1)/(4),0],[0,(1)/(4)]] 2) [[(1)/(2),0],[0,(1)/(2)]] 3) [[(3)/(4),0],[0,(3)/(4)]], 4) [[1,0],[0,1]]

If A = ([1,4],[2,3]) then show that A^2-4A-5I = theta and using this find A^(-1) . Where I= ([1,0],[0,1]) and theta = ([0,0],[0,0]) .

If A=[[1, 0, 0], [0, 1, 1], [0, -2, 4]] and A^(-1)=(1)/(6)(A^(2)+cA+dI) , where c, din R and I is an identity matrix of order 3, then (c, d)=