Home
Class 12
MATHS
sin^(-1)(2x sqrt(1-x^(2)))=2sin^(-1)x,|x...

sin^(-1)(2x sqrt(1-x^(2)))=2sin^(-1)x,|x|<=(1)/(sqrt(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following : sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,x in[-1/sqrt2,1/sqrt2]

sin^(-1)(2x sqrt(1-x^(2)))=2sin^(-1)x is true if- x in[0,1] b.[-(1)/(sqrt(2)),(1)/(sqrt(2))] c.[-(1)/(2),(1)/(2)]d[-(sqrt(3))/(2),(sqrt(3))/(2)]

Prove that : sin^(-1) (2x sqrt(1-x^(2)))= 2 sin^(-1) x, - 1/(sqrt(2)) le x le 1/(sqrt(2))

Prove that : sin^(-1) (2x sqrt(1-x^(2)) ) = 2 sin^(-1) x , -1/(sqrt(2))le x le 1/(sqrt(2)

(sin^(-1)x)/(sqrt(1-x^(2))

(sin^(-1)x)/(sqrt(1-x^(2))

sin^(-1)(2x sqrt(1-x^(2))),x in[(1)/(sqrt(2)),1] is equal to

solve : sin ^(-1) ""((x)/(sqrt(1+x^(2))))-sin ^(-1)((1)/(sqrt(1+x^(2))))= sin ^(-1) ((1+x)/(1+x^(2)))

sin^(-1)x+sin^(-1)sqrt(1-x^(2))

sin^(-1)[sqrt(x^(2)-x^(3))-sqrt(x-x^(3))]=..... a) sin^(-1)x+sin^(-1)sqrt(x) b) sin^(-1)x-sin^(-1)sqrt(x) c) sin^(-1)sqrt(x)-sin^(-1)x d) 2sin^(-1)x