Home
Class 12
MATHS
" Range of the function "f(x)=cos^(-1)(-...

" Range of the function "f(x)=cos^(-1)(-{x})" .where "{.}" is fractional part function,is "

Promotional Banner

Similar Questions

Explore conceptually related problems

Range of the function f(x)=({x})/(1+{x}) is (where "{*}" denotes fractional part function)

Domain of the function f(x)=log_(e)cos^(-1){sqrt(x)}, where {.} represents fractional part function

The function f(x)= cos ""(x)/(2)+{x} , where {x}= the fractional part of x , is a

The function f(x)= cos ""(x)/(2)+{x} , where {x}= the fractional part of x , is a

Domain of function f(x)=ln(x), where {} represents fractional part function.

Find the range of f(x)=x-{x} , where {.} is the fractional part function.

Consider the function f(x)=(cos^(-1)(1-{x}))/(sqrt(2){x}); where {.} denotes the fractional part function,then

Period of the function f(x)=cos(cos pi x)+e^({4x}), where {.} denotes the fractional part of x, is

Statement - 1: The function f(x) = {x}, where {.} denotes the fractional part function is discontinuous a x = 1 Statement -2: lim_(x->1^+) f(x)!= lim_(x->1^+) f(x)