Home
Class 12
MATHS
If hat u , hat v , hat w be three non-c...

If ` hat u , hat v , hat w` be three non-coplanar unit vectors with angles between ` hat u& hat v` is `alpha` between ` hat v& hat w` is `beta` and between ` hat w& hat u` is `gamma` . If ` vec a , vec b , vec c` are the unit vectors along angle bisectors of `alpha,beta,gamma` respectively, then prove that `[ vec ax vec b vec bx vec c vec cx vec a]=1/(16)[ hat u hat v hat w]^2sec^2(alpha/2)sec^2(beta/2)sec^2(gamma/2)`

Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    RESONANCE DPP|Exercise All Questions|5 Videos

Similar Questions

Explore conceptually related problems

The angle between vec A= hat i- + hat j and vec B= hat i- hat j is.

If hat(a) and hat(b) are the unit vectors along vec(a) and vec(b) respectively, then what is the projection of vec(b) on vec(a) ?

Let hat(u), hat(v) and hat(w) are three unit vectors, the angle between hat(u) and hat(v) is twice that of the angle between hat(u) and hat(w) and hat(v) and hat(w) , then [hat(u) hat(v) hat(w)] is equal to

Find the angle between the vectors vec a and vec b where: vec a=hat i-hat j and vec b=hat j+hat k

Find the angle between the vectors vec A = hat I + 2 hat j- hat k and vec B =- hat I + hatj - 2 hat k .

If vec a=hat i+hat j+hat k,vec c=hat j-hat k are given vectors,then find vec a vector vec b satisying the equation vec a xxvec b=vec c and vec avec b=3

If vec a = hat i + hat j, vec b = hat i + hat k, vec c = hat k + hat i, a unit vector parallel to vec a + vec b + vec c

If vec a= hat i+ hat j+ hat k , vec c= hat j- hat k , vec adot vec b=3 and vec ax vec b= vec c , then vec b is equal to

Find the angle between the vectors vec a and vec b where: vec a=hat i+2hat j-hat k,vec b=hat i-hat j+hat k

Given vec a=x hat i+y hat j+2 hat k , vec b= hat i- hat j+ hat k , vec c= hat i+2 hat j ; vec a_|_ vec b , vec adot vec c=4. Then [ vec a vec b vec c]^2=| vec a| b. [ vec a vec b vec c]^=| vec a| c. [ vec a vec b vec c]^=0 d. [ vec a vec b vec c]^=| vec a|^2