Home
Class 11
MATHS
" 1."(dy)/(dx)+2y=sin x...

" 1."(dy)/(dx)+2y=sin x

Promotional Banner

Similar Questions

Explore conceptually related problems

If (dy)/(dx)= y sin 2x, y(0)=1 , then solution is

If (sin x)^2 =x+y find (dy)/(dx) Find (dy)/(dx) if y=sin^(-1)[2^(x+1)/(1+4^x)]

If sin y = x sin (a + y) prove that (dy) / (dx) = (sin a) / (1-2x cos a + x ^ (2))

Find the (dy)/(dx) of y=sin^(-1)sqrt(1-x^2)

Find (dy)/(dx) , if sin^2 x + cos^2 y = 1

Find (dy)/(dx) If sin^2 x +cos^2 y=1

If y = x^(2) " sin " (1)/(x) " then " (dy)/(dx) = ?

If sin y=x sin(a+y), then show that: (dy)/(dx)=(sin a)/(1-2x cos a+x^(2))

If e^y(x+1)=1, show that (d^(2y))/(dx^2)=((dy)/(dx))^2 If y=sin(2sin^(-1)x), show that ((1-x^2)d^(2y))/(dx^2)=x(dy)/(dx)-4y

If e^(y)(x+1)=1, show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2) If y=sin(2sin^(-1)x), show that ((1-x^(2))d^(2y))/(dx^(2))=x(dy)/(dx)-4y