Home
Class 11
MATHS
[" Show that equations "x=5*(1-t^(2))/(1...

[" Show that equations "x=5*(1-t^(2))/(1+t^(2)),y=6*(t)/(1+t^(2))" where "t" is a "],[" variable parameter,define an ellipse.Find its eccentricity."]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = (2at)/(1 + t^2) , y = (a(1-t^2) )/(1 + t^2) , where t is a parameter, then a is

Find the equation to the locus represented by x=(2+t+1)/(3t-2), y=(t-1)/(t+1) wher t is variable parameter.

The eccentricity of the conic x=3((1-t^(2))/(1+t^(2))) and y=(2t)/(1+t^(2)) is

The eccentricity of the conic x=3((1-t^(2))/(1+t^(2))) and y=(2t)/(1+t^(2)) is

Find the derivatives of the following : x=(1-t^(2))/(1+t^(2)), y=(2t)/(1+t^(2))

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If x=a((1-t^(2))/(1+t^(2))) and y=(2t)/(1-t^(2)) , then find (dy)/(dx) .

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If t be a variable parameter, show that the point x = a(1 -t^(2))/(1+t^(2)),y = b(2t)/(1 + t^(2)) always lies on an ellipse .