Home
Class 12
MATHS
The curves y=a e^x and y=b e^(-x) cut or...

The curves `y=a e^x` and `y=b e^(-x)` cut orthogonally, if `a=b` (b) `a=-b` (c) `a b=1` (d) `a b=2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The curves y=a e^x and y=b e^(-x) cut orthogonally, if (a) a=b (b) a=-b (c) a b=1 (d) a b=2

If the curves y=2\ e^x and y=a e^(-x) intersect orthogonally, then a= 1//2 (b) -1//2 (c) 2 (d) 2e^2

If the curves y=2\ e^x and y=a e^(-x) intersect orthogonally, then a= (a)1//2 (b) -1//2 (c) 2 (d) 2e^2

The curves x^2/a+y^2/b=1 and x^2/a_1+y^2/b_1=1 will cut orthogonally if (a-b) =

The two curves x=y^(2) and xy=a^(3)cut orthogonally,then a^(2) is equal to (1)/(3)(b)3(c)2 (d) (1)/(2)

If the curves ay+x^2=7 and x^3=y cut orthogonally at (1, 1) then a= (A) 1 (B) -6 (C) 6 (D) 1/6

If the curves ay+x^(2)=7 and x^(3)=y cut orthogonally at (1,1) then a=(A)1(B)-6 (C) 6(D)(1)/(6)

If the curve a y+x^2=7 and x^3=y cut orthogonally at (1,\ 1) , then a is equal to (a) 1 (b) -6 (c) 6 (d) 0

If the curve a y+x^2=7 and x^3=y cut orthogonally at (1,\ 1) , then a is equal to (a) 1 (b) -6 (c) 6 (d) 0

The two curves x=y^2,x y=a^3 cut orthogonally at a point. Then a^2 is equal to 1/3 (b) 3 (c) 2 (d) 1/2