Home
Class 12
MATHS
If a x+b y+c z=p , then minimum value o...

If `a x+b y+c z=p` , then minimum value of `x^2+y^2+z^2` is `(p/(a+b+c))^2` (b) `(p^2)/(a^2+b^2+c^2)` `(a^2+b^2+c^2)/(p^2)` (d) `((a+b+c)/p)^2`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    RESONANCE DPP|Exercise All Questions|5 Videos

Similar Questions

Explore conceptually related problems

If positive numbers a, b, c are in H.P, then minimum value of (a+b)/(2a-b)+(c+b)/(2c-b) is

If b+c = 2x, c+a =2y and a +b =2z then value of a^(3) +b^(3) +c^(3) is

If a,b,c, and d are in H.P.then find the value of (a^(-2)-d^(2))/(b^(-2)-c^(2))

If a, b, c , d are in G.P. , then shown that (i) (a + b)^(2) , (b +c)^(2), (c + d)^(2) are in G.P. (ii) (1)/(a^(2) + b^(2)), (1)/(b^(2) +c^(2)), (1)/(c^(2) + a^(2)) are in G.P.

If a, b, c are in G.P. and b-c, c-a, a-b are in H.P. then find the value of ((a+b+c)^(2))/(b^(2)) .

If p(x) = x^3 - 3x^2 + 2x + 5 and p(a) = p(b) = p(c) = 0 , then the value of (2-a) (2-b) (2-c) is.