Home
Class 11
MATHS
If |z-1|lt=2a n d|omegaz-1-omega^2|=a w...

If `|z-1|lt=2a n d|omegaz-1-omega^2|=a` where `omega` is cube root of unity , then complete set of values of `a` is `0lt=alt=2` b. `1/2lt=alt=(sqrt(3))/2` c. `(sqrt(3))/2-1/2lt=alt=1/2+(sqrt(3))/2` d. `0lt=alt=4`

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z-1|lt=2a n d|omegaz-1-omega^2|=a (where omega is a cube root of unity) , then complete set of values of a

If |z-1|lt=2a n d|omegaz-1-omega^2|=a where omega is cube root of unity , then complete set of values of a is a. 0lt=alt=2 b. 1/2lt=alt=(sqrt(3))/2 c. (sqrt(3))/2-1/2lt=alt=1/2+(sqrt(3))/2 d. 0lt=alt=4

If |z-1|lt=2a n d|omegaz-1-omega^2|=a where omega is cube root of unity , then complete set of values of a is a. 0lt=alt=2 b. 1/2lt=alt=(sqrt(3))/2 c. (sqrt(3))/2-1/2lt=alt=1/2+(sqrt(3))/2 d. 0lt=alt=4

If |z-1|lt=2a n d|omegaz-1-omega^2|=a where omega is cube root of unity , then complete set of values of a is a. 0lt=alt=2 b. 1/2lt=alt=(sqrt(3))/2 c. (sqrt(3))/2-1/2lt=alt=1/2+(sqrt(3))/2 d. 0lt=alt=4

If |z-1|<=2and| omega z-1-omega^(2)|=a where omega is cube root of unity,then complete set of values of a is 0<=a<=2 b.(1)/(2)<=a<=(sqrt(3))/(2)c(sqrt(3))/(2)-(1)/(2)<=a<=(1)/(2)+(sqrt(3))/(2)d.0<=a<=4

If omega is a complex cube root of unity, then the value of sin{(omega^(10)+omega^(23))pi-(pi)/(6)} is a) (1)/(sqrt(2)) b) (sqrt(3))/(2) c) -(1)/(sqrt(2)) d) (1)/(2)

If |z-1|<=2 and | omega z-1-omega^(2)|=a then (a) 0<=a<=2 (b) (1)/(2)<=a<=(sqrt(3))/(2) (c) (sqrt(3))/(2)-(1)/(2)<=a<=(1)/(2)+(sqrt(3))/(2)

a ,b , c are integers, not all simultaneously equal, and omega is cube root of unity (omega!=1) , then minimum value of |a+bomega+comega^2| is 0 b. 1 c. (sqrt(3))/2 d. 1/2

a ,b , c are integers, not all simultaneously equal, and omega is cube root of unity (omega!=1) , then minimum value of |a+bomega+comega^2| is 0 b. 1 c. (sqrt(3))/2 d. 1/2

a ,b , c are integers, not all simultaneously equal, and omega is cube root of unity (omega!=1) , then minimum value of |a+bomega+comega^2| is 0 b. 1 c. (sqrt(3))/2 d. 1/2