Home
Class 11
MATHS
Find k so that ("lim")(x->2)\ f(x) may e...

Find `k` so that `("lim")_(x->2)\ f(x)` may exist, where `f(x)={2x+3,\ xlt=2x+k , x >2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find k so that ("lim")_(x->2)\ f(x) may exist, where f(x)={2x+3,\ xlt=2\ and x+k , x >2

Find k so that (lim)_(x rarr2)f(x) may exist,where f(x)={2x+3,x 2

Find k so that lim_(x rarr 2) f(x) exists, where f(x) = {(2x+3 if xle2),(x + k if x gt2):}

Find k, so that underset(xrarr2)lim f(x) may exist, where f(x)={(x^2+1, xle2),(x+k, x>2):}

Find 'k' so that : lim_(x to 2) f(x) exists, where : f(x)={{:(2x+3",", "if "x le 2), (x+3k",", "if "x gt 2):}

Find 'k' so that : lim_(x to 2) f(x) exists, where : f(x)={{:(2x+3",", "if "x le 2), (x+2k",", "if "x gt 2):}

Find 'k' so that : lim_(x to 2) f(x) exists, where : f(x)={{:(2x+3",", "if "x le 2), (x+k",", "if "x gt 2):}

Find k so that : lim_(x rarr 2)f(x) exists, where : f(x)={(2x+3,"," if xle2), (x+2k,"," if x>2.):}

Find k so that : lim_(x rarr 2)f(x) exists, where : f(x)={(2x+3,"," if xle2), (x+k,"," if x>2.):}

Find k so that : lim_(x rarr 2)f(x) exists, where : f(x)={(2x+3,"," if xle2), (x+3k,"," if x>2.):}