Home
Class 11
MATHS
tan((pi)/(4)+x)*tan((pi)/(4)-x)=1...

tan((pi)/(4)+x)*tan((pi)/(4)-x)=1

Promotional Banner

Similar Questions

Explore conceptually related problems

General solution of tan((pi)/(4)+x)+tan((pi)/(4)-x)=4 is

(sec2x-tan2x) equals a tan(x-(pi)/(4))b)tan((pi)/(4)-x)c cot(x-(pi)/(4))d tan^(2)(x+(pi)/(4))

If (sin(x+alpha))/(cos(x-alpha))=(1-m)/(1+m), prove that tan((pi)/(4)-x)tan((pi)/(4)-alpha)=m

If x=tan ((pi)/(4)+A)+tan(B-(pi)/(4)) and y=tan ((pi)/(4)+A)*tan (B-(pi)/(4)) then (x)/(1-y)=

Let f(x)={(tan)(pi)/(4)+tan x}{(tan)(pi)/(4)+(tan)((pi)/(4)-x)} and g(x)=x^(2)+1 Then g{f(x)}+f'(x)=

{(tan((pi)/(4)+theta)+tan((pi)/(4)-theta))/(tan((pi)/(4)+theta)-tan((pi)/( 4)-theta)))

(tan ((pi)/(4) +4))/( tan ((pi)/(4) -x ))= ((1 + tan x )/( 1- tan x )) ^(2)

(tan ((pi)/(4) +4))/( tan ((pi)/(4) -x ))= ((1 + tan x )/( 1- tan x )) ^(2)

Solve : tan(pi/4+x)+tan(pi/4-x)=4

If 0 lt x lt (pi)/(4), then sec 2x - tan 2x= ................ A) tan (x- (pi)/(4)) B) tan ((pi)/(4) -x) C) tan (x+(pi)/(4)) D) tan ^(2) (x+ (pi)/(4))