If
`(1+x)^n=sum_(r=0)^n a_r x^r&b_r=1+(a_r)/(a_(r-1))&prod_(r=1)^n b_r=((101)^(100))/(100!),`
then equals to:
99 (b) 100 (c) 101
(d) None of these
Text Solution
AI Generated Solution
Topper's Solved these Questions
COMPLEX NUMBERS AND QUADRATIC EQUATIONS
RESONANCE DPP|Exercise All Questions|43 Videos
Similar Questions
Explore conceptually related problems
If a_(n)=n(n!), then sum_(r=1)^(100)a_(r) is equal to
If (1+x+x^2+x^3)^n=sum_(r=0)^300 b_rx^r and k=sum _(r=0)^300 b_r=k, then sum_(r=0)^300 r. b_r, is (A) 50.4^100 (B) 150.4^100 (C) 300.4^100 (D) none of these
If C_r stands for ^nC_r and sum_(r=1)^n (r.C_r)/(C_(r-1)=210 then n= (A) 19 (B) 20 (C) 21 (D) none of these
if (1-x^3)^n=sum_(r=0)^n a_rx^r (1-x)^(3n-2r), where n epsilonN then find a_r .
If (1+x+x^(2)+x^(3))^(n)=sum_(r=0)^(3n)b_(r)x^(r) and sum_(r=0)^(3n)b_(r)=k, the n sum_(r=0)^(3n)rb_(r)