Home
Class 12
MATHS
If u=tan^(-1){(sqrt(1+x^2)-1)/x} and v=2...

If `u=tan^(-1){(sqrt(1+x^2)-1)/x}` and `v=2tan^(-1)x` , then `(d u)/(d v)` is equal to......

Promotional Banner

Similar Questions

Explore conceptually related problems

If u = tan^(-1)"" (sqrt ( 1+x^2)-1)/(x) and v = tan^(-1) x , find (du)/(dv)

If u=tan^(-1)""(sqrt(1+x^(2))-1)/x " and " v=tan^(-1)x, " find " (du)/(dv) .

If u = tan^(-1) (( sqrt(1- x^(2) ) - 1)/( x) ) and v = sin^(-1) x , then (du)/(dv) is equal to a) sqrt( 1- x^2) b) - (1)/(2) c)1 d)-x

If u=sin^(-1)((2x)/(1+x^(2))) and v=tan^(-1)((2x)/(1-x^(2))) , then (du)/(dv) is :

If v = log ( 1 + x^(2)) and u = x - tan^(-1) x then ,( du)/( dv) is equal to

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) w.r.t. tan^(-1)x

If u= log (1+x^(2)) and v=x -tan ^(-1) x,then(dy)/(dx) =

Differentiate tan ^(-1)((sqrt(1+x^2 )-1)/x) w,r,t. tan ^(-1)x

if int tan^(-1)sqrt(x)dx=u tan^(-1)sqrt(x)-sqrt(x)+c then u=