Home
Class 12
MATHS
If f(x) is odd linear polynomial with f(...

If f(x) is odd linear polynomial with f(1) = 1, then `lim_(x->0) (2^(f(cosx))- 2^f(sinx))/(x^2 f(sinx))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is odd linear polynomial with f(1)=1 then lim_(x rarr0)(2^(f(cos x))-2^(f(sin x)))/(x^(2)f(sin x)) is

If f(X) is a polynomial satisfying f(x)f(1/x)=f(x)+f(1/x) and f(2)gt1 , then lim_(x rarr 1)f(x) is

If f is an odd function, then write the value of int_-a^a(f(sinx))/(f(cosx)+f(sin^2x))dx

If f is an odd function, then the value of I=int_(-a)^(a)(f(sinx))/(f(cosx)+f(sin^(2)x))dx is

If f'(2)=6 and f'(1)=4 ,then lim_(x rarr0)(f(x^(2)+2x+2)-f(2))/(f(1+x-x^(2))-f(1)) is equal to ?

If f is an odd function, then evaluate I=int_(-a)^a(f(sinx)dx)/(f(cosx)+f(sin^2x))

If f is an odd function, then evaluate I=int_(-a)^a(f(sinx)dx)/(f(cosx)+f(sin^2x))

If f is an odd function, then evaluate I=int_(-a)^a(f(sinx)dx)/(f(cosx)+f(sin^2x))