Home
Class 11
MATHS
the continued product 2.6.10.14.... to n...

the continued product 2.6.10.14.... to `n` factors is equal to `^2n p_n` (b) `^2n C_n` `(n+1)(n+2)(n+3)(n+n)` `2^ndot(1. 3. 5 ..2 n-1)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    RESONANCE DPP|Exercise All Questions|43 Videos

Similar Questions

Explore conceptually related problems

Prove that: :2^(n)C_(n)=(2^(n)[1.3.5(2n-1)])/(n!)

If ^(2n+1)P_(n-1):^(2n-1)P_(n)=3:5, find n

The value of C_1/2+C_3/4+C_5/6+………. is equal to (A) (2^n=1)/(n-10 (B) 2^n/(n=1) (C) (2^n+1)/(n+1) (D) (2^n-1)/(n+1)

Prove that ((2n+1)!)/(n!)=2^(n)[1.3.5.....(2n-1)*(2n+1)]

If ^(n+5)P_(n+1)=(11(n-1))/(2)n+3P_(n), find n

Prove that ((4n)C_(2n))/((2n)C_(n))=(1.3.5...(4n-1))/([1.3.5...(2n-1)]^(2))

Prove that ((2n+1)!)/(n!)=2^(n){1.3.5(2n-1)(2n+1)}

If ""^(2n)C_(1), ""^(2n)C_(2) and ""^(2n)C_(3) are in A.P., find n.

If ^(2n+1)P_(n-1):^(2n-1)P_(n)=3:5, then find the value of n.

Find 'n', if ""^(2n)C_(1), ""^(2n)C_(2) and ""^(2n)C_(3) are in A.P.