Home
Class 12
MATHS
For integer n>1, the di git at unit plac...

For integer `n>1`, the di git at unit place in the number `sum_(r=0)^100 r!+2^(2^n)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

For integer n>1, the di git at unit place in the number sum_(r=0)^(100)r!+2^(2n) is equal to

For integer n gt 1 , the digit at units place in the number sum_(r=0)^(100)r!+2^(2^n) is

For integer ngt1 , the digit at unit's place in the number sum_(r=0)^(100)r!+2^(2^(n)) is:

For integer n gt 1 , the digit at unit's place in the number sum_(r=0)^(100) r! + 2^(2^(n)) I

For integer n gt 1 , the digit at unit's place in the number sum_(r=0)^(100) r! + 2^(2^(n)) I

sum_(r=1)^(n)(C(n,r))/(r+2) is equal to

(sum_(r=1)^n r^4)/(sum_(r=1)^n r^2) is equal to

If n is an odd natural number, then sum_(r=0)^n (-1)^r/(nC_r) is equal to

If n is an odd natural number, then sum_(r=0)^n (-1)^r/(nC_r) is equal to

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :