Home
Class 12
MATHS
Prove that : cot^(-1)(sqrt(1+sinx)+sqrt...

Prove that : `cot^(-1)(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))=x/2,0

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in(0,pi/4)

Prove that : cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in(0,pi/4)

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2, x in (0,pi/4)

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in (0,pi/4)

Prove That : cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x epsilon(0,(pi)/4)

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in (0,pi/4)

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in (0,pi/4)

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in (0,pi/4)

Prove that: cot^(-1){(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))}=pi/2-x/2 , if pi/2 < x < pi