Home
Class 12
MATHS
sin3A+sin2A-sinA=4sinA"cos"(A)/(2)"cos"(...

`sin3A+sin2A-sinA=4sinA"cos"(A)/(2)"cos"(3A)/(2)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that, sinA+sin2A+sin4A+sin5A= 4cos((A)/(2))cos((3A)/(2))sin3A .

Prove that: sinA+sin2A+sin4A+sin5A= 4sin3A. cosA/2.cos(3A)/(2)

Prove that sinA+sin2A+sin4A+sin5A=4 cos(A/2)cos((3A)/2)sin3A

Prove that : sin3A+ sin 2A- sinA= 4 sinA cos frac (A)(2) cos frac (3A)(2) .

(sin3A)/(sinA)-(cos3A)/(cosA)=2

(sin3A)/(sinA)-(cos3A)/(cosA)=

Prove the following identities: (sinA+cosA)/(sinA-cosA)+(sinA-cosA)/(sinA+cosA)=2/(sin^2A-cos^2A)=2/(2sin^2A-1)=2/(1-2cos^2A)

(sinA+cosA)/(sinA-cosA)+(sinA-cosA)/(sinA+cosA)=2/(sin^2A-cos^2A)=2/(1-2cos^2A)=2/(sin^2A-1) .

On simplifying (sin^3A+sin3A)/(sinA)+(cos^3A-cos3A)/(cosA) we get

Prove that a) (sin3A + sinA)sinA+(cos3A-cosA) cosA=0 b) cos20^(@)cos40^(@)cos80^(@)=1/8 c) (sin8thetacostheta-sin6thetacos3theta)/(cos2thetacostheta-sin3thetasin4theta) = tan2theta