Home
Class 11
MATHS
किसी त्रिभुज ABC में साबित करे कि ...

किसी त्रिभुज ABC में साबित करे कि
`cotA + cotB + cotC = (a^(2) + b^(2) + c^(2))/(4 Delta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In Delta ABC prove that cotA + cotB + cotC = (a^2 + b^2 + c^2)/(4Delta)

In a DeltaABC prove that cotA+cotB+cotC=(a^(2)+b^(2)+c^(2))/(4Delta)

Prove that cotA+cotB+cotC=(a^2+b^2+c^2)/(4Delta)

Show that a^(2)cotA+b^(2)cotB+c^(2)cotC=(abc)/(R)

In a triangle ABC if 9(a^(2)+b^(2))=17c^(2) then (cotA+cotB)/(cotC)=

For any triangle ABC, prove that (b^2 - c^2) cotA + (c^2 - a^2) cotB + (a^2 - b^2) cotC = 0

If A+B+C=pi , prove that: cotB cotC + cotC cotA + cotA cotB=1 .

In A B C ,cotA/2+cotB/2+cotC/2 is equal to Delta/(r^2) (b) ((a+b+c)^2)/(a b c)2R (c) Delta/r (d) Delta/(R r)

In A B C ,cotA/2+cotB/2+cotC/2 is equal to Delta/(r^2) (b) ((a+b+c)^2)/(a b c)2R (c) Delta/r (d) Delta/(R r)

In A B C ,cotA/2+cotB/2+cotC/2 is equal to Delta/(r^2) (b) ((a+b+c)^2)/(a b c)2R (c) Delta/r (d) Delta/(R r)