Home
Class 12
MATHS
Show that b^2 c^2 + c^2 a^2 + a^2 b^2 gt...

Show that `b^2 c^2 + c^2 a^2 + a^2 b^2 gt abc(a + b + c)`, where `a, b, c` are different positivine integers.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that b^2c^2+c^2a^2+a^2b^2gtabc(a+b+c) , where a,b,c gt 0 .

Prove that b^2c^2+c^2a^2+a^2b^2gtabc(a+b+c) , where a,b,c gt 0 .

Prove that b^(2)c^(2) + c^(2)a^(2) + a^(2) b^(2) gt abc (a+b+c)

prove that b^(2)c^(2)+c^(2)a^(2)+a^(2)b^(2)>=abc(a+b+c)

Prove that (b^2+c^2)/(b+c)+(c^2+a^2)/(c+a)+(a^2+b^2)/(a+b)gt a+b+c , where a,b,cgt 0 .

Show that: |b^2+c^2a b a c b a c^2+a^2b c c a c b a^2+b^2|=4a^2b^2c^2

Prove that b^(2)c^(2)+c^(2)a^(2)+a^(2)+b^(2)>abc xx(a+b+c)(a,b,c>0)

Prove that a^(2)+ b^(2) +c^(2) +2abclt2, where a,b,c are the sides of triangle ABC such that a+b+c=2.