Home
Class 12
MATHS
" 1."(1)/(sqrt(x^(2)+2x+3))...

" 1."(1)/(sqrt(x^(2)+2x+3))

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(1)/(3)"log" (x+1)/(sqrt(x^(2)-x+1))+(1)/(sqrt(3))"tan"^(-1)(2x-1)/(sqrt(3)) , show that, (dy)/(dx)=(1)/(x^(3)+1)

Evalute the following integrals int (1)/((x + 1) sqrt(2x^(2) + 3x + 1)) " dx, I " sub R - [ - 1, - (1)/(2)]

IfI=int(dx)/(x^(3)sqrt(x^(2)-1)), then Iequals a.(1)/(2)((sqrt(x^(2)-1))/(x^(3))+tan^(-1)sqrt(x^(2)-1))+C b.(1)/(2)((sqrt(x^(2)-1))/(x^(2))+x tan^(-1)sqrt(x^(2)-1))+Cc(1)/(2)((sqrt(x^(2)-1))/(x^(2))+tan^(-1)sqrt(x^(2)-1))+Cd(1)/(2)((sqrt(x^(2)-1))/(x^(2))+tan^(-1)sqrt(x^(2)-1))+C

The value of integral int e^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(5))))dx is equal to e^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(3))))+ce^(x)((1)/(sqrt(1+x^(2)))-(1)/(sqrt((1+x^(2))^(5))))+ce^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(5))))+c none of these

The domain of (1)/(sqrt(x-x^(2)))+sqrt(3x-1-2x^(2)) is

(1)/(sqrt(x)+sqrt(x+1))+(1)/(sqrt(x+1)+sqrt(x+2))+(1)/(sqrt(x+2)+sqrt(x+3))+...(1)/(sqrt(x+98)+sqrt(x+99))

If [3(3sqrt(x)-(1)/(3sqrt(x)))]^((1)/(3))=2 then find the value of 3sqrt(x)+(1)/(3sqrt(x))

(d)/(dx)[cos^(-1)(x sqrt(x)-sqrt((1-x)(1-x^(2))))]=(1)/(sqrt(1-x^(2)))-(1)/(2sqrt(x-x^(2)))(-1)/(sqrt(1-x^(2)))-(1)/(2sqrt(x-x^(2)))(1)/(sqrt(1-x^(2)))+(1)/(2sqrt(x-x^(2)))(1)/(sqrt(1-x^(2)))0 b.1/4c.-1/4d none of these

Evaluate int ((""^(3)sqrt(x+sqrt(2-x ^(2))))(""^(6)sqrt(1-xsqrt(2-x ^(2))))dx)/(""^(3) sqrt(1-x ^(2))), x in (0,1):