Home
Class 12
MATHS
log(n rarr oo)[(n!)/(n)]^((1)/(n))=...

log_(n rarr oo)[(n!)/(n)]^((1)/(n))=

Promotional Banner

Similar Questions

Explore conceptually related problems

" (e) "lim_(n rarr oo)[(n!)/(n^(n))]^(1/n)

Evaluate: ("lim")_(n rarr oo)[(n !)/(n^n)]^(1//n)

Evaluate: ("lim")_(n rarr oo)[(n !)/(n^n)]^(1//n)

Evaluate: ("lim")_(n rarr oo)[(n !)/(n^n)]^(1//n)

Evaluate: (lim)_(n rarr oo)[(n!)/(n^(n))]^(1/n)

lim_ (n rarr oo) ((n!) ^ ((1) / (n))) / (n) equals

lim_ (n rarr oo) (n) / ((n!) ^ ((1) / (n)))

lim_ (n rarr oo) (1) / ((n) ^ ((1) / (n))) is equal to

lim_(n rarr oo)[(1)/(n)+(1)/(n+1)+(1)/(n+2)+.....+(1)/(2n)]