Home
Class 10
MATHS
" 1) "A(-3,5)^(b)*(3,1)^(2)...

" 1) "A(-3,5)^(b)*(3,1)^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If the ellipse x^2/a^2+y^2/b^2=1 (b > a) and the parabola y^2 = 4ax cut at right angles, then eccentricity of the ellipse is (a) (3)/(5) (b) (2)/(3) (c) (1)/(sqrt(2)) (d) (1)/(2)

if A=[{:(1,6),(2,4),(-3,5):}]B=[{:(3,4),(1,-2),(2,-1):}], then find a matrix C such that 2A-B+c=0

if A=[{:(1,6),(2,4),(-3,5):}]B=[{:(3,4),(1,-2),(2,-1):}], then find a matrix C such that 2A-B+c=0

If A={:((-2,-1),(-5,-3)):}B={:((-3,1),(5,-2)):}and(AB)^(n)=I then n is (a/an)

ABC is a triangle and the internal angle bisector of angle A cuts the side BC at D. If A=(3,-5),B=(-3,3),C=(-1,-2) and AD =lambda sqrt(2/9) then lambda=

ABC is a triangle and the internal angle bisector of angle A cuts the side BC at D. If A=(3,-5), B(-3,3), C=(-1,-2) then find the length AD

ABC is a triangle and the internal angle bisector of angle A cuts the side BC at D. If A=(3,-5), B(-3,3), C=(-1,-2) then find the length AD

A B C is a triangle and A=(2,3,5),B=(-1,3,2) and C= (lambda,5,mu). If the median through A is equally inclined to the axes, then find the value of lambda and mu

A B C is a triangle and A=(2,3,5),B=(-1,3,2) and C= (lambda,5,mu). If the median through A is equally inclined to the axes, then find the value of lambda and mu

A B C is a triangle and A=(2,3,5),B=(-1,3,2) and C= (lambda,5,mu). If the median through A is equally inclined to the axes, then find the value of lambda and mu