Home
Class 12
MATHS
If A+B+C=pi, prove that : sin (B+C-A) + ...

If `A+B+C=pi`, prove that : `sin (B+C-A) + sin (C+A-B) + sin (A+B-C)=4sinA sinB sinC`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A + B + C =180^@ , prove that : sin (B+C-A) + sin(C+ A-B)+ sin(A +B-C)=4sin A sinB sinC .

If A + B + C = 180^(@) , prove that sin(B + C - A) + sin (C + A - B) + sin(A + B + C) = 4 sin A sin B sin C.

Prove that a sinA - b sinB = c sin(A-B)

If A+B+C=pi , prove that : sinA cosB cosC +sinB cosC cosA + sinC cosA cosB = sinA sinB sinC .

If A+B+C=pi , prove that : sinA cosB cosC +sinB cosC cosA + sinC cosA cosB = sinA sinB sinC .

If A + B + C = pi , prove that sin 2A + sin 2B + sin 2C= 4 sin A sin B sin C

If A+B+C=2S , prove that: sin(S-A)+sin(S-B)+sin(S-C)-sinS = 4sinA/2sinB/2sinC/2

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

If A+B+C=pi , prove that : (sin 2A+sin 2B + sin 2C)/(sinA+sinB+sinC) = 8 sin(A/2) sin(B/2) sin(C/2)