Home
Class 12
MATHS
If alpha,beta,gamma and delta are root...

If `alpha,beta,gamma and delta ` are roots of equation `x^4 - 7x^2 + x - 5 = 0,` then the value of `(alpha+beta+gamma)(alpha+beta+delta)(beta+gamma+delta)(alpha+gamma+delta)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma and delta are the roots of the equation x ^(4) -bx -3 =0, then an equation whose roots are (alpha +beta+gamma)/(delta^(2)), (alpha +beta+delta)/(gamma^(2)), (alpha +delta+gamma)/(beta^(2)), and (delta +beta+gamma)/(alpha^(2)), is:

If alpha, beta, gamma and delta are the roots of the equation x ^(4) -bx -3 =0, then an equation whose roots are (alpha +beta+gamma)/(delta^(2)), (alpha +beta+delta)/(gamma^(2)), (alpha +delta+gamma)/(beta^(2)), and (delta +beta+gamma)/(alpha^(2)), is:

If alpha,beta,gamma are roots of the equation x^(3)+px+q=0 then the value of |{:(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta):}| is

If alpha, beta , gamma, delta are the roots of the equation x^4+x^2+1=0 then the equation whose roots are alpha^2, beta^2, gamma^2, delta^2 is

if alpha,beta the roots x^(2)+x+2=0 and gamma,delta the roots of x^(2)+3x+4=0 then find the value of (alpha+gamma)(alpha+delta)(beta+gamma)(beta+delta)

IF alpha,beta and gamma,delta be the roots of the equation x^2+px-r=0 and x^2+px+r=0 respectively, prove that (alpha-gamma)(alpha-delta)=(beta-gamma)(beta-delta)

Suppose alpha,beta,gamma are the roots of x^(3)+x^(2)+x+2=0 then the value of ((alpha+beta-2 gamma)/(gamma))((beta+gamma-2 alpha)/(alpha))((gamma+alpha-2 beta)/(beta))

If alpha, beta, gamma are the roots of x^3+a x^2+b=0 then the value of [[alpha , beta , gamma],[beta , gamma , alpha],[gamma , alpha , beta]] is

If alpha,beta,gamma,delta are the roots of the equation x^(4)+x^(2)+1=0 then the equation whose roots are alpha^(2),beta^(2),gamma^(2),delta^(2) is