Home
Class 12
MATHS
x = 4 (1+cos theta ) and y=3 (1+sin thet...

x = 4 (1+cos `theta `) and y=3 (1+sin `theta`) are the paramatic equations of

A

`((x-3)^2)/(9) + ((y-4)^2)/(16) = 1`

B

`((x+4)^2)/(16) + ((y+3)^2)/(9) = 1`

C

`((x -4)^2)/(16) - ((y-3)^2)/(9) = 1`

D

`((x - 4)^2)/(16) + ((y - 3)^2)/(9) = 1 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given parametric equations: 1. \( x = 4(1 + \cos \theta) \) 2. \( y = 3(1 + \sin \theta) \) ### Step-by-step Solution: **Step 1: Express \(\cos \theta\) in terms of \(x\)** From the equation \( x = 4(1 + \cos \theta) \), we can isolate \(\cos \theta\): \[ \frac{x}{4} = 1 + \cos \theta \] Subtracting 1 from both sides gives: \[ \cos \theta = \frac{x}{4} - 1 \] **Step 2: Express \(\sin \theta\) in terms of \(y\)** From the equation \( y = 3(1 + \sin \theta) \), we can isolate \(\sin \theta\): \[ \frac{y}{3} = 1 + \sin \theta \] Subtracting 1 from both sides gives: \[ \sin \theta = \frac{y}{3} - 1 \] **Step 3: Use the Pythagorean identity** We know that: \[ \cos^2 \theta + \sin^2 \theta = 1 \] Substituting the expressions we found for \(\cos \theta\) and \(\sin \theta\): \[ \left( \frac{x}{4} - 1 \right)^2 + \left( \frac{y}{3} - 1 \right)^2 = 1 \] **Step 4: Expand and simplify the equation** Expanding both squares: \[ \left( \frac{x}{4} - 1 \right)^2 = \frac{x^2}{16} - \frac{x}{4} + 1 \] \[ \left( \frac{y}{3} - 1 \right)^2 = \frac{y^2}{9} - \frac{y}{3} + 1 \] Substituting back into the equation gives: \[ \frac{x^2}{16} - \frac{x}{4} + 1 + \frac{y^2}{9} - \frac{y}{3} + 1 = 1 \] Combining like terms: \[ \frac{x^2}{16} + \frac{y^2}{9} - \frac{x}{4} - \frac{y}{3} + 1 = 1 \] Subtracting 1 from both sides: \[ \frac{x^2}{16} + \frac{y^2}{9} - \frac{x}{4} - \frac{y}{3} = 0 \] **Step 5: Rearranging the equation** To make it look like the standard form of an ellipse, we rearrange: \[ \frac{x - 4}{4}^2 + \frac{y - 3}{3}^2 = 1 \] This can be rewritten as: \[ \frac{(x - 4)^2}{16} + \frac{(y - 3)^2}{9} = 1 \] ### Conclusion: Thus, the parametric equations represent the ellipse given by: \[ \frac{(x - 4)^2}{16} + \frac{(y - 3)^2}{9} = 1 \] This matches with the third option provided in the question.
Promotional Banner

Topper's Solved these Questions

  • GGSIPU MATHEMATICS 2006

    IPUCET PREVIOUS YEAR PAPERS|Exercise MCQ|51 Videos
  • GGSIPU MATHEMATICS 2008

    IPUCET PREVIOUS YEAR PAPERS|Exercise MCQs|39 Videos

Similar Questions

Explore conceptually related problems

If x=x_(1)+-r cos theta,y=y_(1)+-r sin theta be the equation of straight line then,the parameter in this equation is

If x = 3sin theta + 4cos theta and y = 3cos theta - 4 sin theta then prove that x^(2) + y^(2) = 25 .

The radius of the circle whose equation is given parametrically as x=3sin theta-4cos theta and y=3cos theta+4sin theta , theta belongs to R is equal to

If x = 3 sin theta + 4 cos theta and y = 3 cos theta - 4 sin theta then prove that x^(2) + y^(2) = 25 .

x sin ^ (3) theta + y cos ^ (3) theta = sin theta cos theta and x sin theta = y cos theta Find the value of x ^ (2) + y ^ (2)

If x sin^(3) theta + y cos^(3) theta = sin theta cos theta ne 0 and x sin theta - y cos theta = 0 , then value of (x^(2) + y^(2)) is :

If x sin^(3) theta + y cos^(3) theta = sin theta cos theta and x sin theta = y cos theta , then the value of x^(2) + y^(2) is :

If (a cos theta_(1), a sin theta_(1)), ( a cos theta_(2), a sin theta_(2)), (a costheta_(3), a sin theta_(3)) represents the vertices of an equilateral triangle inscribed in x^(2) + y^(2) = a^(2) , then

Show that the equation of the normal at any point 'theta' on the curvex = 3 cos theta -cos^(3) theta, y=3 sin theta -sin^(3) theta is 4(y cos^(3)theta -x sin^(3) theta)=3 sin 4 theta.

IPUCET PREVIOUS YEAR PAPERS-GGSIPU MATHEMATICS 2007-MCQ
  1. If alpha , beta and gamma are the roots of equation x^3 - 8x + 8 =0 ,...

    Text Solution

    |

  2. The GCD of 1080 and 675 is

    Text Solution

    |

  3. x = 4 (1+cos theta ) and y=3 (1+sin theta) are the paramatic equation...

    Text Solution

    |

  4. If the distance between the foci and the distance between the directri...

    Text Solution

    |

  5. The ellipse (x^(2))/(25)+(y^(2))/(16)=1 and the hyperbola (x^(2))/(25)...

    Text Solution

    |

  6. If sectheta=m, tantheta = n, then 1/m{(m+n)+1/(m+n)}

    Text Solution

    |

  7. The value of (sin 85^@ - sin 35^@)/(cos 65^@) is

    Text Solution

    |

  8. If the length of the tengent from any point on the circle x-3^2+y+2^2=...

    Text Solution

    |

  9. The equation of the common tangentof the two touching circles y^2+x^2-...

    Text Solution

    |

  10. The equation of the parabolas with vertex at -1,1 and focus 2,1 is

    Text Solution

    |

  11. The equation(s) of the line(s) which touch both the circle x^(2)+y^(2)...

    Text Solution

    |

  12. If 2A+3B=[(2,-1,4),(3,2,5)] and A+2B=[(5,0,3),(1,6,2)], then B is

    Text Solution

    |

  13. If A=[(1,-3), (2,k)] and A^(2) - 4A + 10I = A, then k is equal to

    Text Solution

    |

  14. The value of |(x +y,y+z,z+x),(x,y,z),(x -y,y-z,z-x)| is euqal to

    Text Solution

    |

  15. On the set QQ of all rational number the operation ** which is both as...

    Text Solution

    |

  16. From an aeroplaneflying,vertically above a horizontal road,the angles ...

    Text Solution

    |

  17. If the angles of a triangle are in the ratio 3:4:5,then the sides are ...

    Text Solution

    |

  18. If cos^(-1) (x) = alpha, (0 lt x lt 1) " and " sin^(-1) (2x sqrt(1 ...

    Text Solution

    |

  19. If a > b > 0,than the value of tan^(-1) (a/b) + tan^(-1) ((a+b)/(a - b...

    Text Solution

    |

  20. If A = {a,b,c} , B={b,c,d} and C = {a,d,c}, then (A-B)xx (B nnC)=

    Text Solution

    |