Home
Class 12
MATHS
The value of ‘lambda ’ so that the vecto...

The value of ‘`lambda` ’ so that the vectors `hati - 3̂ hatj + hatk , 2̂ hati + lambda hatj + hatk ` and `3 hati + hatj - 2 hatk` are coplanar, will be

A

0

B

2

C

`-(1)/(2)`

D

`-4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) such that the vectors \( \hat{i} - 3\hat{j} + \hat{k} \), \( 2\hat{i} + \lambda \hat{j} + \hat{k} \), and \( 3\hat{i} + \hat{j} - 2\hat{k} \) are coplanar, we can use the property that three vectors are coplanar if the scalar triple product of the vectors is zero. This can be determined using the determinant of a matrix formed by the vectors. ### Step-by-Step Solution: 1. **Identify the Vectors**: The vectors are: - \( \mathbf{A} = \hat{i} - 3\hat{j} + \hat{k} \) - \( \mathbf{B} = 2\hat{i} + \lambda \hat{j} + \hat{k} \) - \( \mathbf{C} = 3\hat{i} + \hat{j} - 2\hat{k} \) 2. **Write the Coefficients**: The coefficients of \( \hat{i} \), \( \hat{j} \), and \( \hat{k} \) for each vector are: - For \( \mathbf{A} \): \( (1, -3, 1) \) - For \( \mathbf{B} \): \( (2, \lambda, 1) \) - For \( \mathbf{C} \): \( (3, 1, -2) \) 3. **Set Up the Determinant**: We need to set up the determinant of the matrix formed by these vectors: \[ \begin{vmatrix} 1 & -3 & 1 \\ 2 & \lambda & 1 \\ 3 & 1 & -2 \end{vmatrix} = 0 \] 4. **Calculate the Determinant**: The determinant can be calculated as follows: \[ = 1 \cdot \begin{vmatrix} \lambda & 1 \\ 1 & -2 \end{vmatrix} - (-3) \cdot \begin{vmatrix} 2 & 1 \\ 3 & -2 \end{vmatrix} + 1 \cdot \begin{vmatrix} 2 & \lambda \\ 3 & 1 \end{vmatrix} \] Calculating each of these 2x2 determinants: - \( \begin{vmatrix} \lambda & 1 \\ 1 & -2 \end{vmatrix} = \lambda \cdot (-2) - 1 \cdot 1 = -2\lambda - 1 \) - \( \begin{vmatrix} 2 & 1 \\ 3 & -2 \end{vmatrix} = 2 \cdot (-2) - 1 \cdot 3 = -4 - 3 = -7 \) - \( \begin{vmatrix} 2 & \lambda \\ 3 & 1 \end{vmatrix} = 2 \cdot 1 - \lambda \cdot 3 = 2 - 3\lambda \) Plugging these back into the determinant: \[ 1(-2\lambda - 1) + 3(-7) + 1(2 - 3\lambda) = 0 \] This simplifies to: \[ -2\lambda - 1 - 21 + 2 - 3\lambda = 0 \] Combining like terms: \[ -5\lambda - 20 = 0 \] 5. **Solve for \( \lambda \)**: \[ -5\lambda = 20 \implies \lambda = -4 \] ### Final Answer: The value of \( \lambda \) is \( -4 \).
Promotional Banner

Topper's Solved these Questions

  • GGSIPU MATHEMATICS 2008

    IPUCET PREVIOUS YEAR PAPERS|Exercise MCQs|39 Videos
  • GGSIPU MATHEMATICS 2010

    IPUCET PREVIOUS YEAR PAPERS|Exercise MCQs|47 Videos

Similar Questions

Explore conceptually related problems

Find the value of p, if the vectors hati - 2hatj + hatk , 2hati - 5hatj + phatk and 5hati - 9hatj + 4hatk are coplanar .

The vectors lambdahati + hatj + 2hatk, hati + lambdahatj +hatk, 2hati - hatj + 2hatk are coplanar, if:

If the vectors 2hati-3hatj+4hatk and hati+2hatj-hatk and m hati - hatj+2hatk are coplanar, then the value of m is

Show that the vectors hati-3hatj+2hatk, 2hati-4hatj-hatk and 3hati+2hatj-hatk are linearly independent

Find 'lambda' . If the vectors lambdahati+hatj+2hatk, 2hati-hatj+lambdahatk , and hati+lambdahatj-hatk are coplanar.

Find the value of lambda such that vectors veca = 2hati + lambda hatj + hatk and vecb = hati + 2hatj + 3hatk are orthogonal.

The value of p so that vectors (2hati - hatj +),( hati +2hatj-3hatk) and (3hati + phatj + 5hatk) are coplaner should be:

IPUCET PREVIOUS YEAR PAPERS-GGSIPU MATHEMATICS 2009-MCQs
  1. The distance between the foci of a hyperbola is 16 and its eccentricit...

    Text Solution

    |

  2. The vector of magnitude 9 unit perpencular to the vectors 4hati - hat...

    Text Solution

    |

  3. The value of ‘lambda ’ so that the vectors hati - 3̂ hatj + hatk , 2̂ ...

    Text Solution

    |

  4. The line passing through the point -1, 2, 3 and perpendicular to the p...

    Text Solution

    |

  5. Value of k such that the line (x-4)/1 = (y-2)/1 =(z-k)/2 lies in th...

    Text Solution

    |

  6. Let L be the line of intersection of the planes 2x""+""3y""+""z""="...

    Text Solution

    |

  7. If y=tan^(- 1)sqrt((1-cosx)/(1+cosx)), prove that (dy)/(dx)=1/2.

    Text Solution

    |

  8. Lim(x-gt1)(1-x)T a n((pix)/2)=

    Text Solution

    |

  9. Let f (x = {{: ((x^(2) - 4x + 3)/(x^(2) + 2x - 3), x ne 1),(k, x = 1):...

    Text Solution

    |

  10. Find the point on the curve y = 2x^(2) - 6x - 4 at which the tangent i...

    Text Solution

    |

  11. Find the point on the parabolas x^2=2y which is closest to the p...

    Text Solution

    |

  12. The interval in which the function f(x) = x^2 e^(-x) is non-decreasing...

    Text Solution

    |

  13. Let f(x)={{:(,x^(n)"sin "(1)/(x),x ne 0),(,0,x=0):} Then f(x) is conti...

    Text Solution

    |

  14. The domain of the function f9x)=[(log)(10)((5x)/4)]^(-1/2) is -oo<x<oo...

    Text Solution

    |

  15. The function f(x) = sin x + cos x will be

    Text Solution

    |

  16. int(cossqrtx)/(sqrt(x))dx

    Text Solution

    |

  17. The value of int2^3(sqrt(x))/(sqrt(5-x)+sqrt(x))dxi s

    Text Solution

    |

  18. The area common to y^2 = x and x^2 = y is

    Text Solution

    |

  19. if x+y le 2,x ge 0 then point at which maximum value of 3x + 2y at...

    Text Solution

    |

  20. Maximum value of p=6x+8y subject to 2x+y le 30, x + 2y le 24, x ge ...

    Text Solution

    |