Home
Class 12
MATHS
The value of lim(x-> 0) (sin3x^2)/(lncos...

The value of `lim_(x-> 0) (sin3x^2)/(lncos(2x^2-x))` is

A

0

B

-6

C

1

D

`oo`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • GGSIPU MATHEMATICS 2010

    IPUCET PREVIOUS YEAR PAPERS|Exercise MCQs|47 Videos
  • GGSIPU MATHMATICS 2011

    IPUCET PREVIOUS YEAR PAPERS|Exercise MCQ|46 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr0)(sin3x^(2))/(ln(cos(2x^(2)-x))) is

The value of lim_(xto0) ((1-cos2x)sin5x)/(x^(2)sin3x) is

The value of lim_(x rarr0)((sin(x^(2)))^((1)/(x^(2)))+((1)/(x^(2)))^(x^(2))) is equal to

the value of lim_(x rarr0)((sin2x)/(3x)+(x sin x^(2))/(sin x^(3))) is

lim_(x rarr0)(sin3x cos2x)/(sin2x)

The value of lim_(x rarr0)(sin^(-1)(2x)-tan^(-1)x)/(sin x) is equal to:

The value of lim_(xrarr0) (x^2sin((1)/(x)))/(sinx) , is

solve lim_(x->0) (x^2-sin^2x)/(xsinx)