Home
Class 11
PHYSICS
Prove that the vectors A = 2 hati - 3 h...

Prove that the vectors `A = 2 hati - 3 hat 3 j+hat k` and `B= hat i+hat j + hat k` are mutually perpendicular.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the vectors A = 2 hati - 3 j+hat k and B= hat i+hat j + hat k are mutually perpendicular.

Find the value of lambda so that the vectors vec a= 3 hat i + 3 hat j- lambda hat k and vec b= 2 hat i- hat j+ hat k are perpendicular to each other.

Three vectors overset rarr A = a hat i + hat j + hat k , overset rarr B = hat i + b hat j + hat k and overset rarr C = hat i + hat j + c hat k are mutually perpendicular .The respective values of a,b and c are

Prove that the vectors 3 hat i + hat j + 3 hat k and hat i - hat k are perpendicular.

Show that the vectors a = 2 hat (i) + 3hat (j) + 6 hat (k) , b = 3 hat (i) - 6 hat (j) + 2 hat (k) and c= 6 hat (i) + 2 hat (j) - 3 hat (k) are mutually perpendicular

If the vectors 3 hat i + lambda hat j + hat k and 2 hat i - hat j + 8 hat k are perpendicular, then lambda is

Prove that the vectors vec a= hat i+ 2 hat j +3 hat k and vec b=2 hat i- hat j are perpendicular.

Prove that the vectors 2 hat i- hat j+ hat k , hat i- 3 hat j- 5 hat k and 3 hat i- 4 hat j- 4 hat k are coplanar.

Prove that the vectors vec a = 3 hat i + hat j +3 hat k and vec b = hat i - hat k are perpendicular.