Home
Class 12
MATHS
The solution set of the inequation |x+(1...

The solution set of the inequation `|x+(1)/(x)| lt 4`, is

A

`(2-sqrt(3), 2 +sqrt(3)) cup (-2-sqrt(3), -2 + sqrt(3))`

B

`R-(2-sqrt(3), 2+sqrt(3))`

C

`R-(-2-sqrt(3), -2 + sqrt(3))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( |x + \frac{1}{x}| < 4 \), we will break it down step by step. ### Step 1: Rewrite the Inequality We start with the inequality: \[ |x + \frac{1}{x}| < 4 \] This can be interpreted as: \[ -4 < x + \frac{1}{x} < 4 \] ### Step 2: Solve the Right Side of the Inequality First, we solve: \[ x + \frac{1}{x} < 4 \] To eliminate the fraction, we multiply through by \( x \) (noting that \( x \) must not be zero): \[ x^2 + 1 < 4x \] Rearranging gives: \[ x^2 - 4x + 1 < 0 \] ### Step 3: Find the Roots of the Quadratic Now we will find the roots of the quadratic equation \( x^2 - 4x + 1 = 0 \) using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = -4, c = 1 \): \[ x = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{4 \pm \sqrt{16 - 4}}{2} = \frac{4 \pm \sqrt{12}}{2} = \frac{4 \pm 2\sqrt{3}}{2} = 2 \pm \sqrt{3} \] Thus, the roots are \( 2 - \sqrt{3} \) and \( 2 + \sqrt{3} \). ### Step 4: Test Intervals Next, we need to test the intervals determined by these roots: 1. \( (-\infty, 2 - \sqrt{3}) \) 2. \( (2 - \sqrt{3}, 2 + \sqrt{3}) \) 3. \( (2 + \sqrt{3}, \infty) \) We will test a point from each interval in the inequality \( x^2 - 4x + 1 < 0 \). - For \( x = 0 \) (in the interval \( (-\infty, 2 - \sqrt{3}) \)): \[ 0^2 - 4(0) + 1 = 1 > 0 \quad \text{(not a solution)} \] - For \( x = 2 \) (in the interval \( (2 - \sqrt{3}, 2 + \sqrt{3}) \)): \[ 2^2 - 4(2) + 1 = 4 - 8 + 1 = -3 < 0 \quad \text{(solution)} \] - For \( x = 5 \) (in the interval \( (2 + \sqrt{3}, \infty) \)): \[ 5^2 - 4(5) + 1 = 25 - 20 + 1 = 6 > 0 \quad \text{(not a solution)} \] Thus, the solution for the right side is: \[ x \in (2 - \sqrt{3}, 2 + \sqrt{3}) \] ### Step 5: Solve the Left Side of the Inequality Now we solve: \[ x + \frac{1}{x} > -4 \] Multiplying through by \( x \) (again noting \( x \neq 0 \)): \[ x^2 + 1 > -4x \] Rearranging gives: \[ x^2 + 4x + 1 > 0 \] ### Step 6: Find the Roots of the Quadratic We find the roots of \( x^2 + 4x + 1 = 0 \): \[ x = \frac{-4 \pm \sqrt{4^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{-4 \pm \sqrt{16 - 4}}{2} = \frac{-4 \pm \sqrt{12}}{2} = \frac{-4 \pm 2\sqrt{3}}{2} = -2 \pm \sqrt{3} \] Thus, the roots are \( -2 - \sqrt{3} \) and \( -2 + \sqrt{3} \). ### Step 7: Test Intervals We test the intervals determined by these roots: 1. \( (-\infty, -2 - \sqrt{3}) \) 2. \( (-2 - \sqrt{3}, -2 + \sqrt{3}) \) 3. \( (-2 + \sqrt{3}, \infty) \) - For \( x = -4 \) (in the interval \( (-\infty, -2 - \sqrt{3}) \)): \[ (-4)^2 + 4(-4) + 1 = 16 - 16 + 1 = 1 > 0 \quad \text{(solution)} \] - For \( x = -2 \) (in the interval \( (-2 - \sqrt{3}, -2 + \sqrt{3}) \)): \[ (-2)^2 + 4(-2) + 1 = 4 - 8 + 1 = -3 < 0 \quad \text{(not a solution)} \] - For \( x = 0 \) (in the interval \( (-2 + \sqrt{3}, \infty) \)): \[ 0^2 + 4(0) + 1 = 1 > 0 \quad \text{(solution)} \] Thus, the solution for the left side is: \[ x \in (-\infty, -2 - \sqrt{3}) \cup (-2 + \sqrt{3}, \infty) \] ### Step 8: Combine the Solutions The overall solution set for the inequality \( |x + \frac{1}{x}| < 4 \) is the intersection of the two solution sets: \[ x \in (2 - \sqrt{3}, 2 + \sqrt{3}) \cup (-\infty, -2 - \sqrt{3}) \cup (-2 + \sqrt{3}, \infty) \] ### Final Solution Thus, the solution set is: \[ x \in (-\infty, -2 - \sqrt{3}) \cup (2 - \sqrt{3}, 2 + \sqrt{3}) \cup (-2 + \sqrt{3}, \infty) \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|20 Videos
  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • APPLICATION OF DERIVATIVES

    OBJECTIVE RD SHARMA|Exercise Illustration|6 Videos

Similar Questions

Explore conceptually related problems

The solution set of the inequation |(1)/(x)-2| lt 4 , is

The solution set of the inequation |(3)/(x)+1| gt 2, is

The solution set of the inequation (|x-2|)/(x-2) lt 0 , is

The solution set of the inequation |x+1|

The solution set of the inequation |(2x-1)/(x-1)| gt 2 , is

The solution set of the inequation (x-1)/(x-2) gt 2, is

The solution set of the inequation (3)/(|x|+2)<=1

The solution set of the inequation (x+4)/(x-3) le2 , is

The solution set of the inequation (1)/(5 + 3x) le 0 is