Home
Class 12
MATHS
(1)/(n!)+(1)/(2!(n-2)!)+(1)/(4!(n-4)!)+…...

`(1)/(n!)+(1)/(2!(n-2)!)+(1)/(4!(n-4)!)`+….to n terms is equal to

A

`(2n-1)/(2!)`

B

`(2^(n))/(n+1)!`

C

`(2^(n))/(n!)`

D

`(2^(n)-2)/(n-1)!`

Text Solution

Verified by Experts

We have
`(1)n!+(1)/(2!(n-2)!)+(1)/(4!(n-4)!)`+…
`=(1)/(n!){(1+.^(n)C_(2)+.^(n)C_(4)+…}`
`=(1)/(n!){.^(n)C_(0)+.^(n)C_(2)+.^(n)C_(4)+…}=(1)/(n!)(2^(n-1))=(2^(n-1))/(n!)`
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|5 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA|Exercise Exercise|37 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

(1)/(n!) +(1)/(2!(n-2)!) +(1)/(4!(n-4)!) +... is equal to

The value of (n+2).^(n)C_(0).2^(n+1)-(n+1).^(n)C_(1).2^(n)+(n).^(n)C_(2).2^(n-1)-….." to " (n+1) terms is equal to

Prove that (1)/(n!)+(1)/(2!(n-2)!)+(1)/(4!(n-4)!)+...=(1)/(n!)2^(n-1)

The value of lim_(nrarroo)((1)/(2n)+(1)/(2n+1)+(1)/(2n+2)+…..+(1)/(4n)) is equal to

If n-(1)/(n)=(1)/(4) then n+(1)/(n) is equal to:

let =(1)/(n*(n+1))+(1)/((n+1)*(n+2))+(1)/((n+2)(n+3))+... terms then lim_(n rarr oo)S_(n) is equal to

lim_(n to oo)(1)/(n)(1+sqrt((n)/(n+1))+sqrt((n)/(n+2))+....+sqrt((n)/(4n-3))) is equal to:

OBJECTIVE RD SHARMA-EXPONENTIAL AND LOGARITHMIC SERIES-Section I - Solved Mcqs
  1. If y=-{x^(3)+(x^(6))/(2)+(x^(9))/(3)+….} then

    Text Solution

    |

  2. (1)/(n!)+(1)/(2!(n-2)!)+(1)/(4!(n-4)!)+….to n terms is equal to

    Text Solution

    |

  3. The sum of the series Sigma(oo)^(n=0) (n^(2)-n+1)/(n!) is

    Text Solution

    |

  4. (2)/(1!)+(4)/(3!)+(6)/(5!)+….infty is equal to

    Text Solution

    |

  5. The coefficient of x^(10) in the expansion o f10^(x) in ascending powe...

    Text Solution

    |

  6. In the expansion of (e^(x)-1-x)/(x^(2)) is ascending powers of x the f...

    Text Solution

    |

  7. In the expansion of log(10)(1-x),|x|lt1 the coefficient of x^(n) is

    Text Solution

    |

  8. Sum of series 9/(1!)+19/(2!)+35/(3!)+57/(4!)+... (A) 7e-3 (B) 12e-5...

    Text Solution

    |

  9. The constant term in the expansion of (3^(x)-2^(x))/(x^(2)) is

    Text Solution

    |

  10. Sigma(n=1)^(oo) (x^(2n))/(2n-1) is equal to

    Text Solution

    |

  11. Then sum of the series 1+(1|3)/(2!)x+(1|3|5)/(3!)x^(2)+(1+3+5+7)/(4...

    Text Solution

    |

  12. 1/(e^(3x))(e^x+e^(5x))=a0+a1x+a2x^2+........=>2a1+2^3a3+2^5a5+......=

    Text Solution

    |

  13. Let S=x-(x^(3))/(3!)+(x^(5))/(5!)… and C=1-(x^(2))/(2!)+(x^(4))/(4!) T...

    Text Solution

    |

  14. The sum of series 2/(3!)+4/(5!)+6/(7!)+...........oo is :

    Text Solution

    |

  15. The sum of the series S=Sigma(n=1)^(infty)(1)/(n-1)! is

    Text Solution

    |

  16. The sum of the series loge(3)+(loge(3))^3/(3!)+(loge(3))^5/(5!)+....+ ...

    Text Solution

    |

  17. The value of 1+(log(e)x)+(log(e)x)^(2)/(2!)+(log(e)x)^(3)/(3!)+…inft...

    Text Solution

    |

  18. (1+3)loge3+(1+3^2)/(2!)(loge3)^2+(1+3^3)/(3!)(loge 3)^3+....oo= (a)28...

    Text Solution

    |

  19. If agt0 and x in R, then 1+(xlog(e)a)+(x^(2))/(2!)(log(e)a)^(2)+(x^(...

    Text Solution

    |

  20. (2)/(2!)+(2+4)/(3!)+(2+4+6)/(4!)+….infty is equal to

    Text Solution

    |