Home
Class 12
MATHS
The expansion of (1+(x^(2))/(2!)+(x^(4))...

The expansion of `(1+(x^(2))/(2!)+(x^(4))/(4!)..)^(2)` in ascending powers of x is

A

`1+(x^(2))/(2!)+(x^(4))/(4!)+(x^(6))/(6!)`+…

B

`1+(2^(2)x^(2))/(2!)+(2^(4)x^(4))/(4!)`

C

`1+(2x^(2))/(2!)+(2^(3)x^(4))/(x=4!)+(2^(5)x^(5))/(6!)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
c
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|5 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

The coefficient of x^(4) in the expansion of {sqrt(1+x^(2))-x}^(-1) in ascending powers of x when |x|<1, is 0 b.(1)/(2) c.-(1)/(2) d.-(1)/(8)

The expansion of (3x+2)^(-(1)/(2)) is valid in ascending powers of x, if x lies in the interval.

In the expansion of (e^(x)-1-x)/(x^(2)) is ascending powers of x the fourth term is

If a_(0), a_(1), a(2),… are the coefficients in the expansion of (1 + x + x^(2))^(n) in ascending powers of x, prove that a_(0) a_(2) - a_(1) a_(3) + a_(2) a_(4) - …+ a_(2n-2) a_(2n)= a_(n+1) .

The number of terms in the expansion of (1+2x+x^(2))^(20) when expanded in decreasing powers of x is

Find the coefficient of x in the expansion of [sqrt(1+x^(2))-x]^(-1) in ascending power of x when |x|<1

OBJECTIVE RD SHARMA-EXPONENTIAL AND LOGARITHMIC SERIES-Exercise
  1. The value of log(e) e- log(9) e + log(27) e- log(81) e+…infty is

    Text Solution

    |

  2. The sum of the series (4)/(1!)+(11)/(2!)+(22)/(3!)+(37)/(4!)+(56)/(5!)...

    Text Solution

    |

  3. The expansion of (1+(x^(2))/(2!)+(x^(4))/(4!)..)^(2) in ascending powe...

    Text Solution

    |

  4. The coefficent of x^(n) in the expansion of (1+(x^(2))/(2!)+(x^(4))/(4...

    Text Solution

    |

  5. If alpha,beta are the roots of the equation ax^(2)+bx+c=0 then log(a-b...

    Text Solution

    |

  6. The sum of the series 1+(1+2)/(2!)+(1+2+2^(2))/(3!)+(1+2+2^(2)+2^(3)...

    Text Solution

    |

  7. The sum of the series 1+(1^2+2^2)/(2!)+(1^(2)+2^(2)+3^(2))/(3!)+(1^(...

    Text Solution

    |

  8. The coefficent of x^(n) in the series 1+(a+bx)/(1!)+(a+bx)^(2)/(2!)+...

    Text Solution

    |

  9. The sum of the series (1^(2).2^(2))/(1!)+(2^(2).3^(2))/(2!)+(3^(2).4^(...

    Text Solution

    |

  10. The value of (x+y)(x-y)+1/(2!)(x+y)(x-y)(x^2+y^2)+1/(3!)(x+y)(x-y)(x^4...

    Text Solution

    |

  11. If e^(x)=y+sqrt(1+y^(2) then the value of y is

    Text Solution

    |

  12. If (e^(5x)+e^(x))/(e^(3x)) is expand in a series of ascending powers o...

    Text Solution

    |

  13. In the expansion of (e^(7x)+e^(3x))/(e^(5x)) the constant term is

    Text Solution

    |

  14. The value of sqrt(2-1)/sqrt(2)+3-2sqrt(2)/(4)+5sqrt(2-7)/6sqrt(2)+17-1...

    Text Solution

    |

  15. If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty equals...

    Text Solution

    |

  16. If S=Sigma(n=2)^(oo) ""^(n)C(2) (3^(n-2))/(n!) then S equals

    Text Solution

    |

  17. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  18. IfS=Sigma(n=1)^(oo) (""^(n)C(0)+""^(n)C(1)+""^(n)c(2)+..+""^(n)C(n))/(...

    Text Solution

    |

  19. If S=Sigma(n=2)^(oo) (""^(n)C(2))/(n+1)! then S equals

    Text Solution

    |

  20. 1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

    Text Solution

    |