Home
Class 12
MATHS
The sum of the series (1^(2).2^(2))/(1!)...

The sum of the series `(1^(2).2^(2))/(1!)+(2^(2).3^(2))/(2!)+(3^(2).4^(2))/(3!)`+.. Is

A

27e

B

24e

C

28e

D

25e

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \[ S = \sum_{n=1}^{\infty} \frac{n^2 (n+1)^2}{n!} \] we can break it down step by step. ### Step 1: Rewrite the Series The series can be rewritten as: \[ S = \sum_{n=1}^{\infty} \frac{n^2 (n^2 + 2n + 1)}{n!} \] This expands to: \[ S = \sum_{n=1}^{\infty} \left( \frac{n^4}{n!} + \frac{2n^3}{n!} + \frac{n^2}{n!} \right) \] ### Step 2: Separate the Series Now, we can separate the series into three parts: \[ S = \sum_{n=1}^{\infty} \frac{n^4}{n!} + 2 \sum_{n=1}^{\infty} \frac{n^3}{n!} + \sum_{n=1}^{\infty} \frac{n^2}{n!} \] ### Step 3: Evaluate Each Series We will evaluate each of these series using known results. 1. **For** \( \sum_{n=0}^{\infty} \frac{n^2}{n!} \): - It is known that \( \sum_{n=0}^{\infty} \frac{n^k}{n!} = e \) for \( k = 0, 1, 2, \ldots \) - Specifically, \( \sum_{n=0}^{\infty} \frac{n^2}{n!} = e \). 2. **For** \( \sum_{n=0}^{\infty} \frac{n^3}{n!} \): - It can be shown that \( \sum_{n=0}^{\infty} \frac{n^3}{n!} = e \cdot (1 + 1 + 1) = 3e \). 3. **For** \( \sum_{n=0}^{\infty} \frac{n^4}{n!} \): - Similarly, \( \sum_{n=0}^{\infty} \frac{n^4}{n!} = e \cdot (1 + 1 + 1 + 1) = 7e \). ### Step 4: Combine the Results Now we can substitute back into our expression for \( S \): \[ S = 7e + 2(6e) + e = 7e + 12e + e = 20e \] ### Step 5: Final Result Thus, the sum of the series is: \[ S = 20e \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|5 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

The sum of the series ((1)^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+(4^(2).5)/(4!) +..is

Find the sum to n terms of the series: (3)/(1^(2).2^(2))+(5)/(2^(2).3^(2))+(7)/(3^(2).4^(2))+

The sum of the series (1^(2))/(1!)+(2^(2))/(2!)+(3^(2))/(3!) +……to infty is

Find the sum of first n terms of the series 3/(1^(2).2^(2))+5/(2^(2).3^(2))+7/(3^(2).4^(2))+.......+ and deduce the sum of infinity .

The sum of the series 1+(1+2)/(2!)+(1+2+2^(2))/(3!)+(1+2+2^(2)+2^(3)) +…is

The sum of the series (3)/(1^(2))+(5)/(1^(2)+2^(2))+(7)/(1^(2)+2^(2)+3^(2))+... is

The sum of the series (1^(2))/(2!)+(2^(2))/(3!)+(3^(2))/(4!)+ is e+1 b.e-1 c.2e+1 d.2e-1

The sum of the series 1+(1+2)/(2!)+(1+2+2^(2))/(3!)+(1+2+2^(2)+2^(3))/(4!)+ is equal to

OBJECTIVE RD SHARMA-EXPONENTIAL AND LOGARITHMIC SERIES-Exercise
  1. The sum of the series 1+(1^2+2^2)/(2!)+(1^(2)+2^(2)+3^(2))/(3!)+(1^(...

    Text Solution

    |

  2. The coefficent of x^(n) in the series 1+(a+bx)/(1!)+(a+bx)^(2)/(2!)+...

    Text Solution

    |

  3. The sum of the series (1^(2).2^(2))/(1!)+(2^(2).3^(2))/(2!)+(3^(2).4^(...

    Text Solution

    |

  4. The value of (x+y)(x-y)+1/(2!)(x+y)(x-y)(x^2+y^2)+1/(3!)(x+y)(x-y)(x^4...

    Text Solution

    |

  5. If e^(x)=y+sqrt(1+y^(2) then the value of y is

    Text Solution

    |

  6. If (e^(5x)+e^(x))/(e^(3x)) is expand in a series of ascending powers o...

    Text Solution

    |

  7. In the expansion of (e^(7x)+e^(3x))/(e^(5x)) the constant term is

    Text Solution

    |

  8. The value of sqrt(2-1)/sqrt(2)+3-2sqrt(2)/(4)+5sqrt(2-7)/6sqrt(2)+17-1...

    Text Solution

    |

  9. If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty equals...

    Text Solution

    |

  10. If S=Sigma(n=2)^(oo) ""^(n)C(2) (3^(n-2))/(n!) then S equals

    Text Solution

    |

  11. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  12. IfS=Sigma(n=1)^(oo) (""^(n)C(0)+""^(n)C(1)+""^(n)c(2)+..+""^(n)C(n))/(...

    Text Solution

    |

  13. If S=Sigma(n=2)^(oo) (""^(n)C(2))/(n+1)! then S equals

    Text Solution

    |

  14. 1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

    Text Solution

    |

  15. The sum of the series (12)/(2!)+(28)/(3!)+(50)/(4!)+(78)/(5!)+…is

    Text Solution

    |

  16. If a=sum(n=0)^(oo) (x^(3n))/((3n)!) , b=sum(n=1)^(oo) (x^(3n-2))/((3n-...

    Text Solution

    |

  17. If S(n) denotes the sum of the products of the products of the first n...

    Text Solution

    |

  18. Sigma(n=0)^(oo) (log(e)x)^(n)/(n!) is equals to

    Text Solution

    |

  19. If a = Sigma(n=1)^(oo) (2n)/(2n-1!),b=Sigma(n=1)^(oo) (2n)/(2n+1!) the...

    Text Solution

    |

  20. The value of (1+(a^(2)x^(2))/(2!)+(a^(4)x^(4))/(4!)+…)^(2)-(ax+(a^(3...

    Text Solution

    |