Home
Class 12
MATHS
If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(...

If `y=2x^(2)-1` then `(1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty` equals to

A

`log_(e)((y+1)/(y-1))`

B

`log_(e)((1+y)/(1-y))`

C

`log_(e)((1-y)/(1+y))`

D

`log((1+2y)/(1-2y))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the infinite series given by: \[ S = \frac{1}{x^2} + \frac{1}{2x^4} + \frac{1}{3x^6} + \ldots \] This series can be expressed in summation notation as: \[ S = \sum_{n=1}^{\infty} \frac{1}{n x^{2n}} \] This series resembles the Taylor series expansion of the logarithmic function. We know that: \[ -\log(1-x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots \] If we replace \(x\) with \(\frac{1}{x^2}\), we get: \[ -\log\left(1 - \frac{1}{x^2}\right) = \frac{1}{x^2} + \frac{1}{2x^4} + \frac{1}{3x^6} + \ldots \] Thus, we can write: \[ S = -\log\left(1 - \frac{1}{x^2}\right) \] Next, we simplify \(1 - \frac{1}{x^2}\): \[ 1 - \frac{1}{x^2} = \frac{x^2 - 1}{x^2} \] Now substituting this back into the logarithm: \[ S = -\log\left(\frac{x^2 - 1}{x^2}\right) \] Using the property of logarithms, we can separate the terms: \[ S = -\left(\log(x^2 - 1) - \log(x^2)\right) = \log(x^2) - \log(x^2 - 1) \] This can be further simplified: \[ S = \log\left(\frac{x^2}{x^2 - 1}\right) \] Now, we know that \(y = 2x^2 - 1\). Therefore, we can express \(x^2\) in terms of \(y\): \[ x^2 = \frac{y + 1}{2} \] Substituting this into our expression for \(S\): \[ S = \log\left(\frac{\frac{y + 1}{2}}{\frac{y + 1}{2} - 1}\right) \] This simplifies to: \[ S = \log\left(\frac{\frac{y + 1}{2}}{\frac{y - 1}{2}}\right) = \log\left(\frac{y + 1}{y - 1}\right) \] Thus, the final result is: \[ S = \log\left(\frac{y + 1}{y - 1}\right) \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|5 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

1+(2x)/(1!)+(3x^(2))/(2!)+(4x^(3))/(3!)+..infty is equal to

If y= x^(2) +(1)/( x^(2) + (1)/( x^(2) +...infty )),then (dy)/(dx) =

If tan^(-1)((2x)/(1-x^(2)))+cot^(-1)((1-x^(2))/(2x))=(pi)/(3),x in(0,1), then (x^(4)+(1)/(x^(4))) is equal to

int(x^(2)-1)/(x^(3)sqrt(2x^(4)-2x^(2)+1))dx is equal to

If x^(4) - 3x^(2) - 1 = 0 , then the value of (x^(6)-3x^(2)+(3)/(x^(2))-(1)/(x^(6))+1) is :

OBJECTIVE RD SHARMA-EXPONENTIAL AND LOGARITHMIC SERIES-Exercise
  1. In the expansion of (e^(7x)+e^(3x))/(e^(5x)) the constant term is

    Text Solution

    |

  2. The value of sqrt(2-1)/sqrt(2)+3-2sqrt(2)/(4)+5sqrt(2-7)/6sqrt(2)+17-1...

    Text Solution

    |

  3. If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty equals...

    Text Solution

    |

  4. If S=Sigma(n=2)^(oo) ""^(n)C(2) (3^(n-2))/(n!) then S equals

    Text Solution

    |

  5. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  6. IfS=Sigma(n=1)^(oo) (""^(n)C(0)+""^(n)C(1)+""^(n)c(2)+..+""^(n)C(n))/(...

    Text Solution

    |

  7. If S=Sigma(n=2)^(oo) (""^(n)C(2))/(n+1)! then S equals

    Text Solution

    |

  8. 1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

    Text Solution

    |

  9. The sum of the series (12)/(2!)+(28)/(3!)+(50)/(4!)+(78)/(5!)+…is

    Text Solution

    |

  10. If a=sum(n=0)^(oo) (x^(3n))/((3n)!) , b=sum(n=1)^(oo) (x^(3n-2))/((3n-...

    Text Solution

    |

  11. If S(n) denotes the sum of the products of the products of the first n...

    Text Solution

    |

  12. Sigma(n=0)^(oo) (log(e)x)^(n)/(n!) is equals to

    Text Solution

    |

  13. If a = Sigma(n=1)^(oo) (2n)/(2n-1!),b=Sigma(n=1)^(oo) (2n)/(2n+1!) the...

    Text Solution

    |

  14. The value of (1+(a^(2)x^(2))/(2!)+(a^(4)x^(4))/(4!)+…)^(2)-(ax+(a^(3...

    Text Solution

    |

  15. If S(n)=(1^(2).(2))/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+…(n^(2).(n+1))...

    Text Solution

    |

  16. If S=Sigma(n=0)^(oo) (logx)^(2n)/(2n!) , then S equals

    Text Solution

    |

  17. If y+(y^(3))/(3)+(Y^(5))/(5)+…infty=2(x+(x^(3))/(3)+(x^(5))/(5)+..inft...

    Text Solution

    |

  18. The value of log 2+2 (1/5+1/3.(1)/(5^(3))+1/5.(1)/(5^(5))+..+infty) is

    Text Solution

    |

  19. The sum of the series 1/1.2-1/2.3+1/3.4-1/4.5+ ... is

    Text Solution

    |

  20. e^{(x-1)-1/2(x-1)^2+((x-1)^3)/3-(x-1)^(4)/4+......} is eqaul to

    Text Solution

    |