Home
Class 12
MATHS
If x ne 0 then the sum of the series 1...

If `x ne 0` then the sum of the series
`1+(x)/(2!)+(2x^(2))/(3!)+(3x^(3))/(4!)+..to infty` is

A

`(e^(x)+1)/(x)`

B

`(e^(x)(x-1))/(x)`)

C

`(e^(x)(x-1)+1)/(x)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
d
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA|Exercise Exercise|37 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

The sum of the series 1+(2^(3))/(2!)+(3^(3))/(3!)+(4^(3))/(4!) +… to infty is

The sum of the series (1)/(1!)x+(2)/(2!)x^(2)+(3)/(3!)x^(3) ….. To infty is

The sum of the series x+(2^(3))/(2!)x^(2)+(3^(3))/(3!)x^(3)+(4^(3))/(4!)x^(4) +……..to infty is

The sum of the series x+(2^(2))/(2!)x^(2)+(3^(2))/(3!)x^(3) +…. to infty is

The sum of the series (1)/(2!)+(1+2)/(3!)+(1+2+3)/(4!)+..to infty is equal to

Statement -1: The sum of the series (1)/(1!)+(2)/(2!)+(3)/(3!)+(4)/(4!)+..to infty is e Statement 2: The sum of the seies (1)/(1!)x+(2)/(2!)x^(2)+(3)/(3!)x^(3)+(4)/(4!)x^(4)..to infty is x e^(x)

1+(2x)/(1!)+(3x^(2))/(2!)+(4x^(3))/(3!)+..infty is equal to

The sum of the series x+(2^(4))/(2!)x^(2)+(3^(4))/(3!)x^(3)+(4^(4))/(4!) +…..is

The sum of the series (1)/(2)x^(2)+(2)/(3)x^(3)+(3)/(4)x^(4)+(4)/(5)x^(5)+... is :

OBJECTIVE RD SHARMA-EXPONENTIAL AND LOGARITHMIC SERIES-Chapter Test
  1. The series expansion of log{(1+x)^(1+x)(1-x)^(1-x)} is

    Text Solution

    |

  2. 2log x-log(x+1)-log(x-1) is equals to

    Text Solution

    |

  3. The coefficient of x^(n) in the expansion of log(e)(1)/(1+x+x^(2)+x^...

    Text Solution

    |

  4. If x ne 0 then the sum of the series 1+(x)/(2!)+(2x^(2))/(3!)+(3x^(3...

    Text Solution

    |

  5. If log(1-x+x^(2))=a(1)x+a(2)x^()2)+a(3)x^(2)+a(3)x^(3)+…and n is not a...

    Text Solution

    |

  6. If log(1-x+x^(2))=a(1)x+a(2)x^(2)+a(3)x^(3)+… then a(3)+a(6)+a(9)+.....

    Text Solution

    |

  7. The coefficient of x^(n) in the expansion of log(a)(1+x) is

    Text Solution

    |

  8. The coeffiecent of n^(-r) in the expansion of log(10)((n)/(n-1)) is

    Text Solution

    |

  9. The sum of the series (x-1)/(x+1)+1/2(x^(2)-1)/((x+1)^(2)+1/3(x^(3)-...

    Text Solution

    |

  10. The sum of series 2[ 7^(-1)+3^(-1).7^(-3)+5^(-1).7^(-5)+...] is

    Text Solution

    |

  11. The coefficient of x^(6) in the expansion of log{(1+x)^(1+x)(1-x)^(...

    Text Solution

    |

  12. The sum of the series 1/2x^2+2/3x^3+3/4x^4+4/5x^5+... is :

    Text Solution

    |

  13. If x,y,z are three consecutive positive integers and X-Z + 2 = 0, then...

    Text Solution

    |

  14. The sum of the series ((1)^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+(...

    Text Solution

    |

  15. The value of 1-log(e)2+(log(e)2)^(2)/(2!)-(log(e)2)^(3)/(3!)+.. is

    Text Solution

    |

  16. 1+(loge n)^2 /(2!) + (loge n )^4 / (4!)+...=

    Text Solution

    |

  17. (2)/(3!)+(4)/(5!)+(6)/(7!)+..is equal to

    Text Solution

    |

  18. Sum of n terms of the series 1/(1.2.3.4.)+1/(2.3.4.5) +1/(3.4.5.6)+.....

    Text Solution

    |

  19. The value of 1+(log(e)x)+(log(e)x)^(2)/(2!)+(log(e)x)^(3)/(3!)+…inft...

    Text Solution

    |

  20. If |x|lt1 then the coefficient of x^(3) in the expansion of log(1+x+x^...

    Text Solution

    |